ROLE OF CONNECTIVITY AND CLUSTERS IN SPATIAL CYCLIC SIRS EPIDEMIC DYNAMICS

Ken A. Hawick

View Full Paper

References

  1. [1] Arashiro, E., Tome, T.: The threshold of coexistence and critical behaviour of a predator-prey cellular automaon. J. Phys. A. Math. and Gen. 40, 887–900 (2007)
  2. [2] Athithan, S., Shukla, V.P., Biradar, S.R.: Dynamic cellular automata based epidemic spread model for population in patches with movement. Journal of Computational Environmental Science A, 518053–1– 8 (2014)
  3. [3] Carduy, J.L., Grassberger, P.: Epidemic models and percolation. J. Phys. A Math. Gen. 18, L267–L271 (1985)
  4. [4] pada Das, K., Kundu, K., Chattopadadhyay, J.: A predator-prey mathematical model with both the populations affected by diseases. Ecological Complexity 8, 68–80 (2011)
  5. [5] Fuks, H., Lawniczak, A.T.: Individual-based lattice model for spatial spread of epidemics. Discrete Dynamics in Nature and Society 6, 191–200 (2001)
  6. [6] Grassberger, P.: On the critical behavior of teh general epidemic process and dynamical percolation. Mathematical Biosciences 63, 157–172 (1983)
  7. [7] Hawick, K.A.: Spectral analysis of growth in spatial lotka-volterra models. In: Proc. International Conference on Modelling and Simulation. pp. 14–20. No. 685-030, IASTED, Gabarone, Botswana (6-8 September 2010)
  8. [8] Hawick, K.A.: Complex Domain Layering in Even Odd Cyclic State Rock-Paper-Scissors Game Simulations. In: Proc. IASTED International Conference on Modelling and Simulation (MS2011). pp. 129–136. No. 735-062, IASTED, Calgary, Alberta, Canada (46 July 2011)
  9. [9] Hawick, K.A.: Cycles, diversity and competition in rock-paper-scissors-lizard-spock spatial game simulations. In: Proc. International Conference on Artificial Intelligence (ICAI’11). pp. 115–121. CSREA, Las Vegas, USA (18-21 July 2011)
  10. [10] Hawick, K.A.: Catalytic sets and cyclic repetition in spatial agent-based models. Tech. Rep. CSTN195, Computer Science, Massey University, Auckland, New Zealand (June 2013)
  11. [11] Hawick, K.A.: Neighbourhood and number of states dependence of the transient period and cluster patterns in cyclic cellular automata. In: Proc. 10th Int. Conf. on Scientific Computing (CSC’13). p. CSC7339. No. CSTN-207, WorldComp, Las Vegas, USA (22-25 July 2013), http://www.massey.ac.nz/˜kahawick/ cstn/207/cstn-207.html
  12. [12] Hawick, K.A., Scogings, C.J.: Dynamical runaway growth and simulation of cancer amongst spatial ani260 mat agents. In: IASTED Int. Conference on Applied Simulation and Modelling, Palma de Mallorca, Spain. pp. 142–147. Palma de Mallorca, Spain (7-9 September 2009), 682-011
  13. [13] House, T., Keeling, M.J.: Deterministic epidemic models with explicit household structure. Mathematical Biosciences 213, 29–39 (2008)
  14. [14] Husselmann, A.V., Hawick, K.A.: Genetic programming using the karva gene expression language on graphical processing units. In: Proc. 10th International Conference on Genetic and Evolutionary Methods (GEM’13). p. GEM2456. No. CSTN-171, WorldComp (22-25 July 2013)
  15. [15] Jensen, I., Dickman, R.: Time dependent perturbation theory for diffusive non-equilibroium lattice models. J. Phys. A: Math. Gen. 26, L151–L157 (1993)
  16. [16] Lalley, S.P., Perkins, E.A., Zheng, X.: A phase transition for measure-valued sir epidemic processes. The Annals of Probability 42, 237–310 (2014)
  17. [17] Li, W.T., Lin, G., Ma, C., Yang, F.Y.: Traveling wave solutions of a nonlocal delayed sir model without outbreak threshold. Discrete and Continuous Dynamical Systems Series B 19(2), 467–484 (2014)
  18. [18] Llensa, C., Juher, D., Saldana, J.: On the early epidemic dynamics for pairwise models. J. Theor. Biol. Online, 1–11 (2014)
  19. [19] Matsuda, H., Ogita, N., Sasaki, A., Ka: Statistical mechanics of population. Progress of Theoretical Physics 88(6), 1035–1049 (1992)
  20. [20] Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. SFI WORKING PAPER: 2000-01-002, Santa Fe Institute (2000)
  21. [21] Moreira, A.G., Dickman, R.: Critical dynamics of the contact process with quenched disorder. Phys. Rev. E 54(4), R3090–R3093 (1996)
  22. [22] de Oliveira, M.M., Alves, S.G., Ferreira, S.C., Dickman, R.: Contact process on a voronoi triangulation. Phys. Rev. E 78, 031133–1–5 (2008)
  23. [23] Pan, Q., Liu, R., He, M.: An epidemic model baed on individuals with movement characteristics. Physica A 399, 157–162 (2014)
  24. [24] Quach, D.Q., Willemse, J.M., Preez, V.D., Hawick, K.A.: Species survivability and altitude dependence in a lotka-volterra predator-prey spatial-agent based system. In: Proc. 14th Int. Conf. on Bioinformatics and Computational Biology. p. BIC7290. No. CSTN-231, WorldComp, Las Vegas, USA (2225 July 2013), http://www.massey.ac.nz/ ˜kahawick/cstn/231/cstn-231.html
  25. [25] Rhodes, C.J., Anderson, R.M.: Dynamics in a lattice epidemic model. Physics Letters A 210, 183–188 (1996)
  26. [26] Rhodes, C.J., Anderson, R.M.: Persistence and dynamics in lattice models of epidemic spread. J. Theor. Biol. 180, 125–133 (1996)
  27. [27] Roberts, M.: The immunoepidemiology of nematode parasites of farmed animals: A mathematical approach. Parasitology Today 15(6), 246–251 (1999)
  28. [28] Sabag, M.M.S., de Oliveira, M.J.: Conserved contact process in one to five dimensions. Phys. Rev E 66, 036115–1–5 (2002)
  29. [29] Sazonov, I., Kelbert, M., Gravenor, M.B.: A new view on migration processes between sir centra: an account of the different dynamics of host and guest. arXiv 1401.6830v1, Swanse University (27 January 2014)
  30. [30] de Souza, D.R., Tome, T.: Stochastic lattice gas model describing the dynamics of the sirs epidemic process. Physica A 389, 1142–1150 (2010)
  31. [31] Tokar, V.I., Dreysse, H.: A lattice gas model of strained epitaxy and self-organization of small clusters. Computational Materials Science 24, 72–77 (2002)
  32. [32] Tome, T., Ziff, R.M.: On the critical behavior of the susceptible-infected-recovered (sir) model on a square lattice. arXiv 1006.2129v2, Iniversidade de Sao Paulo, Brazil (27 October 2010)
  33. [33] Wang, J., Liu, M., Li, Y.: Analysis of epidemic models with demographics in metapopulation networks. Physica A 392, 1621–1630 (2013)

Important Links:

Go Back