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ABSTRACT
Understanding infection propagation and sustain-
ability behaviours of epidemics in spatially distributed pop-
ulations remain difficult problems. We use an agent-based
simulation to explore the roles of geometrical agent con-
nectivity and component clusters in the Susceptible, In-
fected, Recovered; Susceptible cyclic SIRS model. We
study the distribution of sizes of infected clusters on simple
nearest neighbour connected systems as well as other con-
nectivity geometries including a Moore neighbourhood and
a radial proximity connectivity. We find that both recovery
probability and neighbourhood connectivity size affect and
shift the infection probability trends and lead to increased
sustainability of a system wide epidemic. We discuss the
implications for managing the health of large spatial popu-
lations, the statistics of large scale epidemics and the effect
of more realistic system geometries.
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1 Introduction
Managing the spread of infections and the conse-

quent dynamics of spatial epidemics [2, 5] is an ongo-
ing and important problem in health informatics. Whilst
great progress has been made in studying epidemic dynam-
ics [18, 23] analytically [27] a spatial agent-based model
allows investigation of emergent effects on a macroscopic
spatial scale.

Agent-based approaches to spatial spread has been
successful for modelling predator-prey systems [1, 4] us-
ing both analytical techniques [7, 19] and stochastic ap-
proaches [12,14,24]. Other models based on a spatial agent
based approach with a contact infection process [21,22,28]
have also successfully captured large scale agent popula-
tion effects and behaviours whilst being formulated only in
terms of microscopic individual agent parameters.

The well known susceptible-infected-recovered (SIR)
epidemic model [29,32] has been widely studied both ana-
lytically and spatially. A less studied alternative however is
the cyclic SIRS model [30] which allows recovered agents
to become re-susceptible to infection - and hence help sus-
tain the spread of infection and potentially the life-cycle of
an epidemic. Cyclic effects can have subtle but dramatic

Figure 1. Spreading epidemic model snapshots with τ =
ε = 0.3; p = 1, t = 100, 200, with largest infected cluster
shown in black.

effects on the emergent spatial behaviour of agent-based
models. Cyclic effects [10, 11] in the context of the SIRS
model mean that we can study the nature of the dynamic
equilibrium and the emergent spatial structure [8, 9] with-
out agent populations crashing, which can of course occur
if agents die or if, for example, there are no susceptible
agents left as they have all recovered as occurs in the SIR
model.

In this present article we study the SIRS model on a
lattice [25, 26]. Agents eventually recover from infection
in this model and can also become re-susceptible to infec-
tion again later. The total population size therefore remains
steady. We believe our new contribution concerns study of
the behaviour with different neighbourhood geometries and
to this end, we couple the infection probability to the neigh-
bourhood size of each individual agent so it is more likely
that cross infection occurs if an agent has more infected
neighbours. In effect the model time-step approximates the
probabilistic events that might occur to an individual over a
fixed time period such as a day - effectively integrating over
many detailed interactions. Some work has been reported
on the importance of household [13] and locality effects of
this nature.

Much work has been reported in the literature on the
formation and spread of an epidemic. Figure 1 shows a typ-
ical spatial infection model with susceptible sites in white,
red infected sites, orange recovered sites and the largest in-
fected cluster highlighted in black. In our present article we
focus on the sustainability of an epidemic. We present re-
sults that the model system tends towards a dynamic equi-
librium [15] infection rate - that is relatively independent
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of the detailed individual initial conditions.
We analyse cluster and structural metrics such as the

largest infected component size. These cluster metrics have
not been widely studied [31] previously in this context but
do help identify critical values [16] in the model parameter
space, that are likely related to percolation thresholds [3,6].

Our article is structured as follows: In Section 2 we
describe the SIRS model and how it is implemented as a
spatial system using stochastic discrete events and agent-
based modelling techniques. We present various illustrative
model snapshots in Section 3 as well as various parametric
plots showing the effects of infection and recovery param-
eters as well as the use of differing geometric connectivi-
ties. In Section 4 we discuss the implications of small and
large infected component formation in the system for man-
aging spatial epidemics. We offer some conclusions and
suggested areas for further study in Section 5.

2 Simulation Method
We consider a lattice L of N sites which will typically

be arranged in a square geometry of N = L2 agents with
one agent occupying a single site. In our present model ev-
ery site is occupied and we do not simulate agents moving
around. This localised agent model is a starting point that
could be used to study the more complex case where agents
can move locally or over long distances.

We are particularly interested in the effect of varying
the agent connectivity neighbourhood N and its size |N |.
We restrict our attention in this present article to two di-
mensional connectivity arrangements on regular square lat-
tice but we consider nearest neighbour, Moore neighbour-
hood and a proximity connectivity whereby any agent with
a fixed radius is considered to be a connected neighbour.
Only neighbouring agents can affect one another and in the
SIRS model infected sites can infect any of the connected
neighbours.

Prior work on the SIRS model [30] has used a fixed
infection probability but we modify this so that it incorpo-
rates the neighbourhood size |N | so we can study a more
realistic effect from changing the connectivity geometry.

Our lattice is then populated with agents whose in-
dividual states are: Susceptible; Infected; or Recovered
and in contrast to the usual SIR model, where once agents
are recovered they are considered permanently immune,
we consider the more general SIRS case where recovered
agents can become susceptible once again after some time.

The update algorithm for the SIRS model is cyclic so
that:

S
WSI−−−→ I

WIR−−−→ R
WRS−−−→ S (1)

with rate parameters: WSI = p/|N | governing the auto-
catalytic process of site potentially being infected by any
infectious neighbour; WIR = τ controlling spontaneous
recovery; and WRS = ε controlling the probability of re-
covered sites spontaneously becoming susceptible again. A
useful starting point is to consider τ = ε = 0.1 before we
scan the whole parameter space of the SIRS model. Clamp-

Algorithm 1 Cyclic SIRS Epidemic Agent Model.
choose lattice size, shape, eg square 642

choose neighbourhood N : Nearest, Moore, or Radial
for all runs eg 1..15 do

initialise N agent sites as S, I, R uniformly
for all time steps, eg 2,000 do

for all agents i ∈ N in random order do
if agent was Susceptible then

count number n of infected neighbours
infect it with probability p.n/|N |

end if
if agent was Infected then

become Recovered with probability τ
end if
if agent was Recovering then

become re-Susceptible with probability ε
end if

end for
record measurements, eg cluster statistics

end for
end for
normalise averaged measurements, and std. dvn.

ing ε = 0 recovers the non cyclic SIR model.
We thus have a stochastic agent-based model with just

two parameters considered in this present article. The sim-
ulation algorithm is summarised in Algorithm 1.

It is straightforward to count the numbers
NS , NI , NR of S, I, R agents and hence derive the
normalised population fractions fS , fI and fR. These
are computationally cheap measurements to make upon
the model. We also study the component cluster statistics
of the model systems. Components can be labelled
using various algorithms such as breadth first traversal
of component labels. The system once labelled can be
subsequently analysed and the clusters sorted and the
largest identified. Typically this is a more computationally
expensive process but we perform this for each time step
to ensure we obtain representative average behaviours
of the model. In the experiments reported we typically
average over at least fifteen independent runs. This appears
to attain satisfactorily small error-bars obtained from
standard deviations of the measurements.

3 Selected Simulation Results
We present a number of screen-dump images illustrat-

ing the model behaviour as well as some plots of metrics
averaged over several runs with independently seeded ini-
tial configurations of the model. Unlike some complex sys-
tems models, the SIRS model does not exhibit any partic-
ular need for very large systems to capture different length
scale behaviours for example. Consequently, we show im-
ages for models with 2562 sites, but present statistical av-
erages over metrics for systems of size 642 sites.

Figure 2 shows screen shots illustrating different equi-
librium configurations of the model for fixed values of
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Figure 2. Screen-shots with τ = ε = 0.1; p = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 showing susceptible sites in white, red infected
sites, orange recovered sites and the largest cluster of infected sites in black.

ε = tau = 0.1 but for a range of the contact infection prob-
ability parameter p. These are for a simple nearest neigh-
bour connectivity on a square lattice and with each site
having four nearest neighbours. The model has been ini-
tialised with a random uniform mix of susceptible, infected
and recovered individuals. At very low p the epidemic
dies out and the system rapidly converges to a “white” sys-
tem where all agents are susceptible. As p is increased to
around 0.2 a dynamic equilibrium arises where there are
enough infected sites to maintain a finite population of both
infected and hence also recovered sites. The spatial clusters
shown as red for infected and orange for recovered are gen-
erally quite small however. In effect the infected regions
are localised. There is - as one might expect - a critical
infection probability above which the epidemic maintains
itself, and below which it will die out eventually.

It is interesting to study the cluster size and we show
the largest cluster of infected sites in black. As p is in-
creased we can see that the largest cluster remains quite
small up to and including p ≈ 0.6 but above this is effec-
tively percolated. The site percolation threshold for square
site lattice is around this value although since the model has
three species and not just two, the value we obtain is some-
what higher than for simple 2-species site percolation.

We observe that above this value the black largest
cluster spans the whole system. For simplicity of imple-
mentation we have used periodic boundary conditions on
our simulation. This does not affect the qualitative be-
haviour but simply modifies the precise numerical values
for the thresholds over those obtained for a finite open

Figure 3. Time evolution of the fraction of agents currently
infected.

boundary system. In this present article we are more in-
terested in the qualitative regimes of the model than exact
statistical values.

We can track various metrics computed for the model
and this is valuable to see how the microscopic infection
parameter p affects the behaviour of the systems as a whole.

Figure 3 shows the fraction of infected sites fI plotted
against simulation time on a log-log scale. This confirms
the critical change in behaviour as p is increased. Below
p ≈ 0.25 fI falls off after a time and the epidemic has died
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out. It would be possible to study exactly how long this
takes for a specific site infection geometry.

Figure 4. Time evolution of the fraction of agents currently
susceptible to infection.

Figure 4 shows the corresponding fraction of suscep-
tible sites but on a linear scale. This emphasises the na-
ture of the dynamic equilibrium. The curves reach a dy-
namic equilibrium value about which they fluctuate - for
our model it would appear this is reached after around 500
time steps. To ensure we are definitely measuring final val-
ues that were not contaminated by transients we measured
final mean values averaging over the final 500 steps of a
2000 step run.

We can track the final equilibrium values of the fS
metric for variations in both τ = ε and p and these are
shown in Figure 5. We observe a large plateau region of
τ−p parameter space where the epidemic has died out. The
interesting regime is around low τ or high p. The simple
plots shown above were for a fixed value of τ = 0.1 but we
see how modifying the recovery parameter τ only slightly,
effectively shifts the p curves around.

To understand what is happening in the complex sys-
tem it is useful to look at metrics that capture the compo-
nent cluster behaviours.

Figure 6 shows plots of the number of connected com-
ponents of infected sites plotted against simulation time on
a log-log scale to equally emphasise the various scales. We
see again the critical drop off phenomena for low infection
parameter p but also a crossover at low times. At an early
stage of the simulation high p actually leads to a initial drop
in numbers of infected components that is more severe for
high p than for low p. However after a knockout period
this situation reverses and high p systems stabilise to a dy-
namic equilibrium value of number of infected components
and low p system completely recover.

This behaviour can be seen more clearly in Figure 7
which shows the size of the largest infected cluster as a

Figure 5. Parametric plot for the fraction of agents cur-
rently susceptible to infection.

Figure 6. Time evolution of the number of infected compo-
nents.

function of simulation time, again plotted on a log-log
scale. The largest cluster initially rises for randomly ini-
tialised high p systems before reaching a dynamic equilib-
rium value whereas for low p systems in monotonically de-
clines (apart from fluctuations) leading to a halting of the
epidemic and all sites recovering.

We can examine how the recovery parameter τ
changes this behaviour and the two dimensional paramet-
ric plots in Figure 8 and Figure 9 show the variation of the
number of infected components and size of the largest in-
fected component respectively.

In Figure 8 we see a shoulder pattern at low τ that
shifts the p curves as discussed above. Generally values of
τ < 0.4 are non trivial. Above this the plateau regime of
completely recovered agents is observed.

More detail on the shoulder regime at low p, τ can be
discerned in Figure 9 which illustrates how the size of the
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Figure 7. Time evolution of the size of the largest infected
cluster.

Figure 8. Parametric plot showing effect of infection proba-
bility and recovery probability on number of infected com-
ponent clusters.

largest infected cluster size changes. Interestingly when the
p behaviour is convex, the τ behaviour is concave. Again,
raising the spontaneous probability of recovering (and be-
coming susceptible again) makes it easier for the epidemic
to burn itself out and to fail to establish large spatial clus-
ters of infected sites that can maintain the epidemic even
with relatively high infection probability.

4 Discussion
Although this is a theoretical model without realistic

geometrical details of a real environment, we can adjust the
connectivity geometry to see how this affects the statistics
of infection and recovery.

Figure 10 shows the variation of the fraction of in-
fected sites against infection parameter p for fixed recovery
parameter τ = ε = 0.1, but for three different connectiv-

Figure 9. Parametric plot showing effect of infection proba-
bility and recovery probability on size of the largest cluster
of infected agents.

Figure 10. Final dynamic equilibrium fraction of infected
sites plotted against infection parameter p for nearest-
neighbour; Moore neighbourhood; and radial proximity 4
neighbourhoods.

ity geometries: nearest-neighbour (4); Moore neighbour-
hood(8); and radial proximity 4 with 48 neighbouring sites.
Changing the number of neighbours shifts the cliff edge of
the wholly-recovered plateau over. The curves presented
have error bars of similar scale to the plot symbols and are
relatively smooth.

We see somewhat more dramatic changes when we
examine the corresponding curves for the number of in-
fected component clusters and the size of the largest in-
fected cluster.

Figure 11 shows that increasing the number of neigh-
bours from four (nearest only) to eight (Moore neighbour-
hood) causes a quite substantive drop in the number of in-
fected components.
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Figure 11. Number of infected components plotted against
infection probability for different connectivity neighbour-
hoods.

Figure 12. Size of largest infected cluster plotted against
infection probability p for different connectivity neighbour-
hoods.

This manifests itself in the size of the largest infected
component as shown in Figure 12 where we see an increase
by nearly two orders of magnitude between systems with
nearest neighbour and radial proximity connectivity.

A large connected cluster of infected sites will sustain
itself for longer and the epidemic would persist for rela-
tively low individual infection rates.

Figure 13 shows the parametric space and the effect of
both infection parameter p and recovery parameter τ on the
number of infected component clusters. We see a sharpen-
ing of the shoulder effect into a ridge as recovery probabil-
ity is increased. For a highly connected system behaviour is
dominated by the one infected super-cluster and even if the

infection parameter can be lowered somehow the epidemic
is likely to sustain itself.

Connectivity affects component cluster size and the
effective spatial reach of the epidemic. Other spatial effects
such as waves of infection [17] might also play a part in the
sustainability of an epidemic. There is scope to study this
using synchronous agent update algorithms. To avoid intro-
ducing accidental spatial artifacts we have erred on the side
of caution and used an asynchronous agent update scheme
for this present work and in fact have updated in a random
order especially to avoid introducing accidental patterns. A
cellular automata approach where all agents are updated at
once could be used to deliberately allow waves and other
correlation effects to persist and to see if these play a sig-
nificant role in sustaining the epidemic spatial patterns.

Other detailed geometrical arrangements are possi-
ble and more specific network patterns [33] such as roads,
transport links or other geographically realistic details
could be explored. We believe these can be interesting but
that it is valuable and important to explore the bulk statis-
tical properties of a simple and spatially unbiased model
first. Without doing so pathological features that are solely
due to geographic details can be mistaken for normal emer-
gent model properties.

The role of long range connections or “small world”
graph connections [20] in epidemic models is also impor-
tant. It is likely that the presence of many such small world
connections transforms or bluntens the sharp phase transi-
tional effects seen in the model into a smoother behaving
system - albeit with perhaps faster infection spread. Such
small work systems can sometimes be modelled analyti-
cally using mean-field techniques, and in some ways the
spatial details then become less crucial.

Our model is highly localised, although as we have
seen, increasing the size of the neighbourhood locality has
a significant effect in sharpening the structure of the para-
metric space.

We have fixed the probability of becoming suscepti-
ble to be equal to the probability of recovery. We found the
statistical behaviour of the fraction of recovered agents to
be similar to the fraction of infected agents. A third inde-
pendent parameter could be introduced into the model by
making ε 6= τ and experimenting to see if an independent
spatial structure of recovered agents arises.

5 Conclusion
We have described the cyclic SIRS model and shown

how it can be implemented as a discrete stochastic agent-
based model on a lattice with various different neighbour-
hood connectivity geometries. We parameterised the model
with spontaneous rate-equation based parameters for re-
covery and re-susceptibility. We used a normalised rate
parameter for infection that incorporates the number of in-
fected neighbours to make this contact process more re-
alistic and coupled to the number of neighbouring agents
impinging on a susceptible site.

The SIRS model tends towards a dynamical equi-
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Figure 13. Number of Infected components for the p − τ parametric space, for nearest neighbour connectivity (left); Moore
neighbourhood connectivity (middle) and radial proximity 4 connectivity (right).

librium - in that while individual agents continue to cy-
cle through their individual states, the system as a whole
reaches a statistical mean about which spatial regions fluc-
tuate. The connectivity affects these fluctuations and there
is scope to make a more detailed study of the fluctua-
tion time and spatial size scales. This will affect how a
widespread epidemic can continue to sustain itself or how
it might be quenched or cut-off by introducing physical re-
strictions on physical infected component regions.

In addition to the expected monotonic behaviours
from changes in the infection probability we have also seen
cross over behaviours that are related to initial densities of
infected and recovering agents. We have identified critical
values of the infection and recovery parameters and there is
scope to refine these statistically for larger model sizes of
any particular lattices and geometries of interest.

We have explored a relatively simple model with one
sort of infection present. A system with multiple diseases
will likely have a more complex parametric structure as
becoming infected or recovering from one sort of infec-
tion may change the susceptibility and exposure profile of
agents to another. There is scope for incorporating this ef-
fect as well as more realistic geographic and exposure con-
nectivity details. We believe exploring the parameter space
of such models will be important in planning and “what-if”
analyses for spatial epidemic models and this approach will
continue to be useful for health planning - particularly in
geographically land-locked regions where localised cross-
infection is dominant.
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