Juanjuan Qin, Baokang Zhang, Qi Wu, Ning Sun, and Maoqi Cao
[1] Z. Q. Wang and Z. He, Control charts for attribute data: Reviewand perspectives, Journal of Systems Engineering, 39(3), 2024,344–359. DOI: https://doi.org/10.13383/j.cnki.jse.2024.03.003. [2] W. Zhong and L. Liu, High-dimensional nonpara-metric EWMA control chart based on empiricallikelihood ratio test, Journal of Systems Scienceand Mathematical Sciences, 44(3), 2024, 862–878.DOI: https://doi.org/10.12341/j.ssms.122875.2024.03.010. [3] X. M. Zhang and Y. Fu, Adaptive model predictive controlbased on compensation control, Theory & Applications, 11,2024, 1–8. DOI: http://kns.cnki.net/kcms/detail/44.1240.TP.20231214.0848.042.html. [4] M. D. Zhang, Automatic monitoring system for tobaccosilk processing equipment based on statistical processcontro (SPC), Automation & Instrumentation, 39(4),2024, 47–51. DOI: https://doi.org/10.19557/j.cnki.1001-9944.2024.04.010. [5] W. Ning, Z. Guo, S. Tian, and K. Li, Control chart qualityabnormal pattern recognition based on hybrid feature t-SNEfusion, Systems Engineering Theory & Practice, 44(7), 2024,2381–2393. DOI: https://doi.org/10.12011/SETP2023-157. [6] H. A. O. Lanyu, Z. Di, L. I. Yanting, and P. A.Ershun, Multivariate coupled statistics monitoring ofwafer manufacturing overlay errors based on copula,China Mechanical Engineering, 34(3), 2023, 369–377.DOI: https://doi.org/10.3969/j.issn.1004-132X.2023.03.014. [7] W. Hachicha and A. Ghorbel, A survey of control-chart pattern-recognition literature (1991–2010) basedon a new conceptual classification scheme, Comput-ers & Industrial Engineering, 63(1), 2012, 204–222.DOI: https://doi.org/10.1016/j.cie.2012.03.002. [8] H. Y. Wang and Y. J. Zhuo, Pattern recogni-tion method of PCA-based statistical process controlchart, Statistics & Decision, 36(24), 2020, 20–24.DOI: https://doi.org/10.13546/j.cnki.tjyjc.2020.24.004. [9] A. Addeh, A. Khormali, and N. A. Golilarz, Control chartpattern recognition using RBF neural network with newtraining algorithm and practical features, ISA Transactions,79, 2018, 202–216. DOI: https://doi.org/10.1016/j.isatra.2018.04.020. [10] T. T. El-Midany, M. A. El-Baz, and M. S. Abd-Elwahed,A proposed framework for control chart pattern recognitionin multivariate process using artificial neural networks,Expert Systems with Applications, 37(2), 2010, 1035–1042.DOI: https://doi.org/10.1016/j.eswa.2009.05.092. [11] J. Xu, H. Lv, Z. Zhuang, Z. Lu, D. Zou, andW. Qin, Control chart pattern recognition method basedon improved one-dimensional convolutional neural network,IFAC-PapersOnLine, 52(13), 2019, 1537–1542. DOI:https://doi.org/10.1016/j.ifacol.2019.11.418. [12] T. Zan, Z. Liu, H. Wang, M. Wang, and X. Gao, Control chartpattern recognition using the convolutional neural network,Journal of Intelligent Manufacturing, 31, 2020, 703–716.DOI: https://doi.org/10.1007/s10845-019-01473-0. [13] S. K. Gauri and S. Chakraborty, Recognition of controlchart patterns using improved selection of features, Com-puters & Industrial Engineering, 56(4), 2009, 1577–1588.DOI: https://doi.org/10.1016/j.cie.2008.10.006. [14] A. Anani, S. O. Adewuyi, N. Risso, and W. Nyaaba,Advancements in machine learning techniques for coal andgas outburst prediction in underground mines, Interna-tional Journal of Coal Geology, 285, 2024, 104471. DOI:https://doi.org/10.1016/j.coal.2024.104471. [15] S. Dong, L. Yu, W. A. Zhang, and B. Chen,Robust extended recursive least squares identificationalgorithm for Hammerstein systems with dynamicdisturbances, Digital Signal Processing, 101, 2020, 102716.DOI: https://doi.org/10.1016/j.dsp.2020.102716. [16] X. Zhou, P. Jiang, X. and Wang, Recognition of controlchart patterns using fuzzy SVM with a hybrid kernelfunction, Journal of Intelligent Manufacturing, 29, 2018, 51–67.DOI: https://doi.org/10.1007/s10845-015-1089-6. [17] S.F. Ahmed, M. S. B. Alam, M. Hassan, M. R. Rozbu,T. Ishtiak, N. Rafa, M. Mofijur, A. B. M. ShawkatAli, and A. H. Gandomi, Deep learning modelling tech-niques: current progress, applications, advantages, and chal-lenges, Artificial Intelligence Review, 56, 2023, 13521–13617.DOI: https://doi.org/10.1007/s10462-023-10466-8. [18] E. Kara, G. Zhang, J. J. Williams, G. Ferrandez-Quinto,L. J. Rhoden, M. Kim, J. N. Kutz, and A. Rahman,Deep learning based object tracking in walking droplet andgranular intruder experiments, Journal of Real-Time ImageProcessing, 20, 2023, 86. DOI: https://doi.org/10.1007/s11554-023-01341-4. [19] D. Hu, X. F. Li, X. F. Jiang, R. L. Yang, Y. Liu, and M. Dong,Learning fusion diagnosis method of partial discharge in oil-paper insulation based on multi-spectral information, AdvancedTechnology of Electrical Engineering and Energy, 43(10), 2024,85–92. DOI: https://doi.org/10. 12067/ATEEE2305020. [20] Y. Yang, H. Chen, S. Li, A. A. Heidari, and M. Wang,Orthogonal learning harmonising mutation-based fruit fly-inspired optimizers, Applied Mathematical Modelling, 86, 2020,368–383. https://doi.org/10.1016/j.apm.2020.05.019. [21] T. Liu, J. Feng, D. Fu, and W. Chen, Application of theoptimised YOLOv3 algorithm in substation power equipmentdefect identification and detection, Mechatronic Systemsand Control, 51(4), 2023, 235–243. DOI: 10.2316/J.2023.201-0386. [22] S. Song, Low energy office building design based on non-dominated sorting genetic algorithm 2 and extreme gradi-ent boosting-artificial neural network, Mechatronic Systemsand Control, 52(3), 2024, 194–202. DOI: 10.2316/J.2024.201-0468.
Important Links:
Go Back