Ahmad Hussain AlBayati
[1] T. Naoual, O. Djamel, G. Abderrezak, and R. Messaoud,Advanced control with extended Kalman filter and disturbanceobserver, Indonesian Journal of Electrical Engineering andComputer Science, 28(1), 2022, 124. [2] M.S. Jamri, M.N. Kamarudin, and M.L. Mohd Jamil, Totalpower deficiency estimation of isolated power system networkusing full-state observer method, Indonesian Journal of10Electrical Engineering and Computer Science, 23(3), 2021,1249. [3] A.H. Al-Bayati, Determination of model, implement andcompare new two optimal adaptive fault diagnosis observerswith six observers, Novel Research Aspects in Mathematicaland Computer Science, 1, 2022, 48–72. [4] D.G. Luenberger, Observing the state of a linear system, IEEETransactions on Military Electronics, 8(2), 1964, 74–80. [5] D.G. Luenberger, An introduction to observers, IEEETransactions on Automatic Control, I6(6), 1971, 596–602. [6] R. Isermann, Fault-diagnosis systems: An introduction fromfault detection to fault tolerance (Germany: Springer, 2006). [7] J. Chen and R.J. Patton, Robust model-based fault diagnosisfor dynamic systems (Dordrecht: Kluwer Academic Publishers,1999), 1–15. [8] H. Weiss, On the structure of the Luenberger observer indiscrete-time linear stochastic systems, IEEE Transactions onAutomatic Control, 22(5), 1977, 871–873. [9] G.B. Greg Welch, An introduction to the Kalman filter (NewYork City, NY: ACM, Inc., 2001). [10] M.W. Chen Maoyin, Unknown input observer based chaoticsecure communication, Physics Letters A, 372(10), 2008,1595–1600. [11] G. Zhiwei, T. Breikin, and W. Hong, High-gain estimator andfault-tolerant design with application to a gas turbine dynamicsystem, IEEE Transactions on Control Systems Technology,15(4), 2007, 740–753. [12] R. Isermann, Model-based fault-detection and diagnosis –status and applications, Annual Reviews in Control, 29(1),2005, 71–85. [13] A.H. Al-Bayati and Z. Skaf, A comparative study of linearobservers applied to a DC servo motor, Proc. of the 2010International Conf. on Modelling, Identification and Control,Okayama, 2010, 785–790. [14] H. Wang, and S. Daley, Actuator fault diagnosis: An adaptiveobserver-based technique, IEEE Transactions on AutomaticControl, 41(7), 1996, 1073–1078. [15] Y. Guan and M. Saif, A novel approach to the design ofunknown input observers, IEEE Transactions on AutomaticControl, 36(5), 1991, 632–635. [16] M. Darouach, On the novel approach to the design of unknowninput observers, IEEE Transactions on Automatic Control,39(3), 1994, 698–699. [17] Z. Gao, X. Dai, T. Breikin, and H. Wang, High-gain observer-based parameter identification with application in a gas turbineengine, Proc. of the 17th World Congress, The InternationalFederation of Automatic Control, Seoul, Korea, July 6–11,2008, 2008. [18] A. Albayati and H. Wang, Design and implementation of newoptimal linear actuator fault diagnosis observers, InternationalJournal of Systems, Control and Communications, 7(1),2016. [19] K. Ouarid, M. Essabre, A.E. Assoudi, and E.H.E. Yaagoubi,State and fault estimation based on fuzzy observer for aclass of Takagi-Sugeno singular models, Indonesian Journalof Electrical Engineering and Computer Science, 25(1), 2022,172, [20] C.V. Ramamoorthy, Fault-tolerant computing: An introductionand an overview, IEEE Transactions on Computers, 20(11),1971, 1241–1244. [21] R.J. Patton, Fault-tolerant control systems: The 1997 situation,Proceedings of the IFAC Symposium, Volumes, 97, 1997,1035–1055. [22] M. Benosman, Review article a survey of some recent resultson nonlinear fault tolerant control, Mathematical Problems inEngineering, 2010, 2010, 25. [23] D.H. Owens, Feedback and multivariable systems, IEE ControlEngineering Series, Peregrinus, 1978. [24] Z. Skaf, A.H. Al-Bayati, and H. Wang, An adaptive PI controllerfor non-Gaussian stochastic systems, Proc. 2010 8th WorldCongress on Intelligent Control and Automation (WCICA),Jinan, 2010, 832–837. [25] R.J. Veillette, J.V. Medanif, and W.R. Perkins, Design ofreliable control systems, IEEE Transactions on AutomaticControl, 37(3), 1992, 290–304. [26] R. Patton, Robustness issues in fault-tolerant control, Proc.IEE Colloquium on Fault Diagnosis and Control SystemReconfiguration, London, 1993, 1–125. [27] A.S. Willsky, A survy of design methods for failure detectionin dynamic systems, Automatica, 12, 1976, 601–611. [28] K. Sarah, Sliding mode observers: A survey, InternationalJournal of Systems Science, 39(8), 2008, 751–764. [29] J.J. Gertler, Survey of model-based failure detection andisolation in complex plants, IEEE Control Systems Magazine,8(6), 1988, 3–11. [30] A.H. Al-Bayati, Z. Skaf, and H. Wang, A comparative study ofnonlinear observers applied to a DC servo motor, Proc. 20108th World Congress on Intelligent Control and Automation(WCICA), Jinan, 2010, 855–860. [31] A.H. Al-Bayati and Z. Skaf, A comparative study of linearobservers applied to a DC servo motor, Proc. of the 2010International Conference on Modelling, Identification andControl (ICMIC), Okayama, 2010, 785–790. [32] C. Edwards, S.K. Spurgeon, and R.J. Patton, Sliding modeobservers for fault detection and isolation, Automatica, 36(4),2000, 541–553. [33] S.S.H. Zaidi, S. Aviyente, M. Salman, K.K. Shin, and E.G.Strangas, Failure prognosis of DC starter motors using hiddenMarkov models, IEEE International Symposium on Diagnosticsfor Electric Machines, Power Electronics and Drives, 2009.SDEMPED 2009, Cargese, 2009, 1–7. [34] S. Zaidi, S. Aviyente, M. Salman, K. Shin, and E. Strangas,Prognosis of gear failures in DC starter motors using hiddenMarkov models, IEEE Transactions on Industrial Electronics,58(5), 2011, 1695– 1706. [35] A.H. Al-Bayati and H. Wang, An iterative adaptive onlinefault prognosis via hybrid fuzzy and importance sampling,Proc. of the 11th World Congress on Intelligent Control andAutomation, Shenyang, 29 June-4 July 2014, 4207–4212. [36] Y. Wang and J.M. Winters, An event-driven dynamic recurrentneuro-fuzzy system for adaptive prognosis in rehabilitation,Proc. of the 25th Annual International Conf. of the IEEEEngineering in Medicine and Biology Society, 2003, Cancun,2003, 1256–1259. [37] D.E. Adams and M. Nataraju, A nonlinear dynamical systemsframework for structural diagnosis and prognosis, InternationalJournal of Engineering Science, 40(17), 2002, 1919–1941. [38] A.H. Al-Bayati and H. Wang, Design and implementation ofnew optimal linear actuator fault diagnosis observers, Inter-national Journal of Systems, Control and Communications,7(1), 2016, 1–15. [39] R.E.G. Volkan Cevher, T.N. Saleem, and T.D. Savitsky,Importance sampling (Houston, TX: Rice University, 2008). [40] C. Bishop, Pattern recognition and machine learning (Cam-bridge, U.K.: Springer Science, 2006). [41] A. Owen and Y. Zhou, Safe and effective importance sampling,Journal of the American Statistical Association, 95(449), 2000,135–143. [42] Y.Z.A. Owen, Safe and effective importance sampling, Journalof the American Statistical Association, Theory and Methods95(449), 2000. [43] H. Kahn and A. Marshall, Methods of reducing sample size inMonte Carlo computations, Journal of the Operations ResearchSociety of America, 1, 1953, 263–278. [44] J.L.A. Kong and W. Wong, Sequential imputations andBayesian missing data problems, Journal of the AmericanStatistical Association, Theory and Methods, 89(425), 1994. [45] B.C. Kuo, Digital control systems (Cary, NC: Oxford UniversityPress, Inc., 1992).11
Important Links:
Go Back