OBSTACLE AVOIDANCE MODEL BASED ON FUZZY CONTROL FOR MULTI-SENSOR INFORMATION FUSION OF UNMANNED AERIAL VEHICLES

Fuli Qi and Ling Yang

References

  1. [1] B. Mao, X. Wu, J. Lv, and G. Chen, Predefined-time boundedconsensus of multiagent systems with unknown nonlinearityvia distributed adaptive fuzzy control, IEEE Transactions onCybernetics, 53(4), 2022, 2622–2635.
  2. [2] Y. Fang, B. Luo, T. Zhao, D. He, B. Jiang, and Q.Liu, ST-SIGMA: Spatio-temporal semantics and interactiongraph aggregation for multi-agent perception and trajectoryforecasting, CAAI Transactions on Intelligence Technology,7(4), 2022, 744–757.
  3. [3] S. Na, H. Niu, B. Lennox, and F. Arvin, Bio-inspired collisionavoidance in swarm systems via deep reinforcement learning,IEEE Transactions on Vehicular Technology, 71(3), 2022,2511–2526.
  4. [4] R. Huang, C. Qin, J.L. Li, and X. Lan, Path planning of mobilerobot in unknown dynamic continuous environment usingreward-modified deep Q-network, Optimal Control Applicationsand Methods, 44(3), 2023, 1570–1587.
  5. [5] V.S.R. Kosuru and A.K. Venkitaraman, Developing a deep Q-learning and neural network framework for trajectory planning,European Journal of Engineering and Technology Research,7(6), 2022, 148–157.
  6. [6] B. Wang, S.G. Nersesov, and H. Ashrafiuon, Robust formationcontrol and obstacle avoidance for heterogeneous underactuatedsurface vessel networks, IEEE Transactions on Control ofNetwork Systems, 9(1), 2022, 125–137.
  7. [7] J. Xu, C. Qian, J.W. Park, and K.S. Park, Adaptive sampling-based moving obstacle avoidance for cable-driven parallelrobots, IEEE/ASME Transactions on Mechatronics, 27(6),2022, 4983–4993.
  8. [8] J. Qi, J. Guo, M. Wang, C. Wu, and Z. Ma, Formation trackingand obstacle avoidance for multiple quadrotors with static anddynamic obstacles, IEEE Robotics and Automation Letters,7(2), 2022, 1713–1720.
  9. [9] B. Guo, N. Guo, and Z. Cen, Obstacle avoidance withdynamic avoidance risk region for mobile robots in dynamicenvironments, IEEE Robotics and Automation Letters, 7(3),2022, 5850–5857.
  10. [10] T.N. Mustafaevich and R. Shakhboz, System for analyzing andprocessing data on university staff based on a fuzzy controllerwith a fixed knowledge base, Open Access Repository, 8(3),2022, 16–21.
  11. [11] Y. Pan, Y. Wu, and H.K. Lam, Security-based fuzzy controlfor nonlinear networked control systems with DoS attacks via aresilient event-triggered scheme, IEEE Transactions on FuzzySystems, 30(10), 2022, 4359–4368.
  12. [12] P. Chotikunnan, R. Chotikunnan, A. Nirapai, A.Wongkamhang, P. Imura, and M. Sangworasil, Optimizingmembership function tuning for fuzzy control of roboticmanipulators using PID-driven data techniques, Journal ofRobotics and Control, 4(2), 2023, 128–140.
  13. [13] M. Li, H. Chen, and R. Zhang, An input dead zones consideredadaptive fuzzy control approach for double pendulum craneswith variable rope lengths, IEEE/ASME Transactions onMechatronics, 27(5), 2022, 3385–3396.5
  14. [14] T. Xu, H. Zhou, S. Tan, Z. Li, X. Ju, and Y. Peng,Mechanical arm obstacle avoidance path planning based onimproved artificial potential field method, Industrial Robot: TheInternational Journal of Robotics Research and Application,49(2), 2022, 271–279.
  15. [15] D. Cui and Z. Xiang, Nonsingular fixed-time fault-tolerantfuzzy control for switched uncertain nonlinear systems, IEEETransactions on Fuzzy Systems, 31(1), 2022, 174–183.
  16. [16] W. Tang, Y. Zhou, T. Zhang, Y. Liu, J. Liu, and Z. Ding,Cooperative collision avoidance in multirobot systems usingfuzzy rules and velocity obstacles, Robotica, 41(2), 2023,668–689.
  17. [17] A. Hentout, A. Maoudj, and M. Aouache, A review of theliterature on fuzzy-logic approaches for collision-free pathplanning of manipulator robots, Artificial Intelligence Review,56(4), 2023, 3369–3444.
  18. [18] S. Kumar, D.R. Parhi, and M.K. Muni, Path planningand obstacle avoidance of multi-robotic system in staticand dynamic environments, Proceedings of the Institutionof Mechanical Engineers, Part B: Journal of EngineeringManufacture, 237(9), 2023, 1376–1390.
  19. [19] B. P´erez-Canedo and J.L. Verdegay, On the application of alexicographic method to fuzzy linear programming problems,Journal of Computational and Cognitive Engineering, 2(1),2023, 47–56.
  20. [20] A. Islam, F. Othman, N. Sakib, and H.M.H. Babu, Preventionof shoulder-surfing attack using shifting condition withthe digraph substitution rules, Artificial Intelligence andApplications, 1(1), 2023, 58–68.
  21. [21] P.D. Puninchathaya, M. Rao, R. Rao, S. Kumar, and R.M.Ahmed, Experimental investigations on flexurally amplifiedpiezoactuator based active vibration isolation system usingPID controller, Mechatronic Systems and Control, 49(3), 2021,132–141.
  22. [22] M.R. Mohd Romlay, A. Mohd Ibrahim, S.F. Toha, P. DeWilde, I. Venkat, and M.S. Ahmad, Obstacle avoidance fora robotic navigation aid using fuzzy logic controller-optimalreciprocal collision avoidance (FLC-ORCA), Neural Computingand Applications, 35(30), 2023, 22405–22429.
  23. [23] F. Umam, M. Fuad, I. Suwarno, A. Ma’arif, and W.Caesarendra, Obstacle avoidance based on stereo visionnavigation system for omni-directional robot, Journal ofRobotics and Control, 4(2), 2023, 227–242.
  24. [24] W. Wu and Y. Wei, Guiding unmanned aerial vehicle pathplanning design based on improved ant colony algorithm,Mechatronic Systems and Control, 49(1), 2021, 48–54.
  25. [25] N. Gupta and L. Dewan, Trajectory tracking and balancingcontrol of rotary inverted pendulum system using quasi-sliding mode control, Mechatronic Systems and Control, 50(1),2022, 1–8.

Important Links:

Go Back