Jun Hao


  1. [1] J. Wang, Q. Zhang, and D. Zhao, Highway lane change decision-making via attention-based deep reinforcement learning,IEEE/CAA Journal of Automatica Sinica, 9(3), 2022,567–569.
  2. [2] M. Zhang, X. Wan, L. Gang, X. Lv, Z. Wu, and Z. Liu,An automated driving strategy generating method based onWGAIL–DDPG, International Journal of Applied Mathematicsand Computer Science, 31(3), 2021, 461–470.
  3. [3] H. Wang, H. Gao, S. Yuan, H. Zhao, K. Wang, X. Wang, K.Li, and D. Li, Interpretable decision-making for autonomousvehicles at highway on-ramps with latent space reinforcementlearning, IEEE Transactions on Vehicular Technology, 70(9),2021, 8707–8719.
  4. [4] H. Hu, Q. Wang, M. Cheng, and Z. Gao, Cost-sensitivesemi-supervised deep learning to assess driving risk byapplication of naturalistic vehicle trajectories, Expert Systemswith Applications, 178(2), 2021, 1–13.
  5. [5] B. Zhang, M. Peng, S. Cheng, and L. Sun, A decision-makingmethod based on Bayesian optimization algorithm for smallmodular reactor, Kerntechnik, 85(2), 2020, 109–121.
  6. [6] H. Ahn, K. Berntorp, P. Inani, A.J. Ram, and S. Di Cairano,Reachability-based decision-making for autonomous driving:Theory and experiments, IEEE Transactions on ControlSystems Technology, 29(5), 2020, 1907–1921.
  7. [7] G. Li, Y. Yang, S. Li, X. Qu, N. Lyu, and S.E. Li, Decisionmaking of autonomous vehicles in lane change scenarios:Deep reinforcement learning approaches with risk awareness,Transportation Research, Part C. Emerging Technologies,134(1), 2022, 1–18.
  8. [8] M. Yuan, J. Shan, and K. Mi, Deep reinforcementlearning based game-theoretic decision-making for autonomousvehicles, IEEE Robotics and Automation Letters, 7(2), 2022,818–825.
  9. [9] M.S. Al-Rakhami, A. Gumaei, M.M. Hassan, A. Atif, A.Musaed, R. Abdur, and G. Fortino, A deep learning-basededge-fog-cloud framework for driving behavior management,Computers & Electrical Engineering, 96(Pt B), 2021,107573–107593.
  10. [10] H. Wang, S. Yuan, M. Guo, X. Li, and W. Lan, A deepreinforcement learning-based approach for autonomous drivingin highway on-ramp merge, Proceedings of the Institutionof Mechanical Engineers, Part D: Journal of AutomobileEngineering, 235(10–11), 2021, 2726–2739.
  11. [11] Y. Fu, C. Li, F.R. Yu, H.L. Tom, and Z. Yao, A decision-makingstrategy for vehicle autonomous braking in emergency viadeep reinforcement learning, IEEE Transactions on VehicularTechnology, 69(6), 2020, 5876–5888.
  12. [12] H. Wang, S. Yuan, M. Guo, C.Y. Chan, X. Li, and W.Lan, Tactical driving decisions of unmanned ground vehiclesin complex highway environments: A deep reinforcementlearning approach, Proceedings of the Institution of MechanicalEngineers, Part D: Journal of Automobile Engineering, 235(4),2021, 1113–1127.
  13. [13] Q. Qi, L. Zhang, J. Wang, H. Sun, Z. Zhuang, J. Liao,and F. Richard Yu, Scalable parallel task scheduling forautonomous driving using multi-task deep reinforcementlearning, IEEE Transactions on Vehicular Technology, 69(11),2020, 13861–13874.
  14. [14] J. Yang, N. Guizani, L. Hu, G. Ahmed, A. Mubarak, andH.M. Shamim, Smart autonomous moving platforms, IEEENetwork, 34(3), 2020, 116–123.
  15. [15] W. Yuan, Y. Li, H. Zhuang, C. Wang, and M. Yang,Prioritized experience replay-based deep Q learning: Multiple-reward architecture for highway driving decision making, IEEERobotics and Automation Magazine: A publication of the IEEERobotics and Automation Society, 28(4), 2021, 21–31.
  16. [16] T. Fernando, S. Denman, S. Sridharan, and C. Fookes,Deep inverse reinforcement learning for behavior predic-tion in autonomous driving: Accurate forecasts of vehiclemotion, IEEE Signal Processing Magazine, 38(1), 2021,87–96.
  17. [17] S. Zhong, M. Wei, S. Gong, K. Xia, Y. Fu, Q. Fu, andH. Yin, Behavior prediction for unmanned driving based ondual fusions of feature and decision, IEEE Transactions onIntelligent Transportation Systems, 22(6), 2020, 3687–3696.
  18. [18] H. Wang, H. Rong, Q. Zhang, D. Liu, C. Hu, and Y.Hu, Good or mediocre? A deep reinforcement learningapproach for taxi revenue efficiency optimization, IEEETransactions on Network Science and Engineering, 7(4), 2020,3018–3027.
  19. [19] K. Muhammad, A. Ullah, J. Lloret, J.D. Ser, Javier, andV.H.C. de Albuquerque, Deep learning for safe autonomousdriving: Current challenges and future directions, IEEE Trans-actions on Intelligent Transportation Systems, 22(7), 2020,4316–4336.
  20. [20] C. Lee, J. Rashbass, and M. Schaar, Outcome-orienteddeep temporal phenotyping of disease progression, IEEETransactions on Biomedical Engineering, 68(8), 2020,2423–2434.
  21. [21] M. Yang, Research on vehicle automatic driving targetperception technology based on improved MSRPN algorithm,Journal of Computational and Cognitive Engineering, 1(3),2022, 147–151.
  22. [22] M. Li and Y. Wang, Vision-based carpet similarity inspectionusing deep learning and genetic algorithms, MechatronicSystems and Control, 49(3), 2021, 157–163.
  23. [23] V. Kalra, R. Agrawal, and S. Sharma, Domain adaptable modelfor sentiment analysis, Mechatronic Systems and Control,50(2), 2022, 81–86.
  24. [24] I.M. Gadala, B. Li, and Q.H. Meng, An expert system for motorsizing using mechanical dynamics and thermal characterization,Control and Intelligent Systems, 48(1), 2020, 44–56.
  25. [25] Z. Gao, T. Sun, and H. Xiao, Decision-making method forvehicle longitudinal automatic driving based on reinforcementQ-learning, International Journal of Advanced Robotic Systems,16(3), 2019, 17–30.12
  26. [26] G. Li, S. Li, S. Li, and Y Qin, Deep reinforcementlearning enabled decision-making for autonomous driv-ing at intersections, Automotive Innovation, 3(4), 2020,1–12.
  27. [27] Q. Zheng, Y. Shi, N. Zhao, Z. Wang, and H. Li, Lane detectionusing Q-net model, Journal of Physics: Conference Series,2347(1), 2022, 1–17.

Important Links:

Go Back