Yucheng Zhao, Feng Zhang, Junyu Zhang, Meiyi Wang, and Bo Jin


  1. [1] R. Hu, C. Xiong, C. Lyu, H. Zhou, Y. Jin, T. Wei, C. Yu,Z. Zeng, and L. Lian, Modeling, characterization and control ofa piston-driven buoyancy system for a hybrid aerial underwatervehicle, Applied Ocean Research, 120, Mar. 2022, 102925. DOI:10.1016/j.apor.2021.102925.
  2. [2] Z. Zeng, C. Lyu, Y. Bi, Y. Jin, D. Lu, and L. Lian, Reviewof hybrid aerial underwater vehicle: Cross-domain mobilityand transitions control, Ocean Engineering, 248, Mar. 2022,110840. DOI: 10.1016/j.oceaneng.2022.110840.
  3. [3] G. Yao, J. Liang, T. Wang, X. Yang, M. Liu, and Y. Zhang,Submersible unmanned flying boat: Design and experiment,Proc. 2014 IEEE International Conf. on Robotics andBiomimetics (ROBIO 2014), Bali, Indonesia, Dec. 2014,1308–1313. DOI: 10.1109/ROBIO.2014.7090514.
  4. [4] F. Rockenbauer, S.L. Jeger, L. Beltran, M.A. Berger, M. Harms,N. Kaufmann, M. Rauch, M. Reinders, N. Lawrance, T. Stastny,and R.Y. Siegwart, Dipper: A dynamically transitioning aerial-aquatic unmanned vehicle, Proc. Robotics: Science and SystemsXVII, Robotics: Science and Systems Foundation, Virtually,Jul. 2021. DOI: 10.15607/RSS.2021.XVII.048.
  5. [5] D. Edwards, N. Arnold, S. Heinzen, C. Strem, and T.Young, Flying emplacement of an underwater glider, Proc.OCEANS 2017 - Anchorage, Anchorage, AK, Sep. 2017,1–6.
  6. [6] W. Weisler, W. Stewart, M.B. Anderson, K.J. Peters,A. Gopalarathnam, and M. Bryant, Testing and charac-terization of a fixed wing cross-domain unmanned vehicleoperating in aerial and underwater environments, IEEE Journalof Oceanic Engineering, 43(4) , Oct. 2018, 969–982. DOI:10.1109/JOE.2017.2742798.
  7. [7] W. Stewart, W. Weisler, M. Anderson, M. Bryant, andK. Peters, Dynamic modeling of passively draining structuresfor aerial–aquatic unmanned vehicles, IEEE Journal ofOceanic Engineering, 45(3), Jul. 2020, 840–850. DOI:10.1109/JOE.2019.2898069.
  8. [8] H. Alzu’bi, I. Mansour, and O. Rawashdeh, Loon Copter:Implementation of a hybrid unmanned aquatic–aerial quad-copter with active buoyancy control, Journal of Field Robotics,35(5), Aug. 2018, 764–778. DOI: 10.1002/rob.21777.
  9. [9] M.M. Maia, D.A. Mercado, and F.J. Diez, Design andimplementation of multirotor aerial-underwater vehicles withexperimental results, Proc. 2017 IEEE/RSJ InternationalConf. on Intelligent Robots and Systems (IROS), Vancouver,BC, Sep. 2017, 961–966. DOI: 10.1109/IROS.2017.8202261.
  10. [10] Y.H. Tan and B.M. Chen, Design of a morphablemultirotor aerial-aquatic vehicle, Proc. OCEANS 2019MTS/IEEE SEATTLE, Seattle, WA, 2019, 1–8. DOI:10.23919/OCEANS40490.2019.8962867.
  11. [11] D. Lu, Y. Guo, C. Xiong, Z. Zeng, and L. Lian, Takeoff andlanding control of a hybrid aerial underwater vehicle on dis-turbed water’s surface, IEEE Journal of Oceanic Engineering,47(2), Apr. 2022, 295–311. DOI: 10.1109/JOE.2021.3124515.
  12. [12] D. Lu, C. Xiong, B. Lyu, Z. Zeng, and L. Lian, Multi-modehybrid aerial underwater vehicle with extended endurance,Proc. 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans(OTO), Kobe, May 2018, 1–7. DOI: 10.1109/OCEAN-SKOBE.2018.8559438.
  13. [13] N. Zhou, X. Cheng, Y. Xia, and Y. Liu, Fully adaptive-gain-based intelligent failure-tolerant control for spacecraftattitude stabilization under actuator saturation, IEEETransactions on Cybernetics, 52(1), Jan. 2022, 344–356. DOI:10.1109/TCYB.2020.2969281.
  14. [14] Y. Zhou, Z. Tian, and H. Lin, UAV based adaptivetrajectory tracking control with input saturation and unknown10time-varying disturbances, IET Intelligent Transport Systems,17(4), Apr. 2023, 780–793. DOI: 10.1049/itr2.12303.
  15. [15] J. Tan, Y. Dong, P. Shao, and G. Qu, Anti-saturationadaptive fault-tolerant control with fixed-time prescribedperformance for UAV under AOA asymmetric constraint,Aerospace Science and Technology, 120, Jan. 2022, 107264.DOI: 10.1016/j.ast.2021.107264.
  16. [16] Y. Kang, B. Park, C. Yoo, Y. Kim, and S. Koo, Flighttest results of automatic tilt control for small scaled tiltrotor aircraft, Proc. 2008 International Conf. on Control,Automation and Systems, Seoul, South Korea, Oct. 2008,47–51. DOI: 10.1109/ICCAS.2008.4694527.
  17. [17] X. Yu, R. Chen, L. Wang, X. Yan, and Y. Yuan, Anoptimization for alleviating pilot workload during tilt rotoraircraft conversion and reconversion maneuvers, AerospaceScience and Technology, 129, Oct. 2022, 107854. DOI:10.1016/j.ast.2022.107854.
  18. [18] Design update of transition scheduler for smart UAV-alldatabases, (accessed Nov. 30, 2023).
  19. [19] X. Fu and H. Guo, Robust adaptive fault-tolerant controlbased on GBF-CMAC neural network for low-altitude UAV,International Journal of Robotics and Automation, 38(4), 2023,267–276. DOI: 10.2316/J.2023.206-0715.
  20. [20] G. Farid, H. Mo, A.H. Baqar, and S.M. Ali, Compre-hensive modelling and static feedback linearization-basedtrajectory tracking control of a quadrotor UAV, Mecha-tronic Systems and Control, 46(3), 2018, 97–106. DOI:10.2316/Journal.201.2018.3.201-2846.
  21. [21] S. Islam, X.P. Liu, and A.E. Saddik, Adaptive sliding modecontrol of unmanned four rotor flying vehicle, InternationalJournal of Robotics and Automation, 30(2), 2015. DOI:10.2316/Journal.206.2015.2.206-3960.
  22. [22] A.A. Neto, L.A. Mozelli, P.L. J. Drews, and M.F.M. Campos,Attitude control for an hybrid unmanned aerial underwatervehicle: A robust switched strategy with global stability,Proc. 2015 IEEE International Conf. on Robotics andAutomation (ICRA), Seattle, WA, May 2015, 395–400. DOI:10.1109/ICRA.2015.7139029.
  23. [23] Q. Chen, D. Zhu, and Z. Liu, Attitude control of aerialand underwater vehicles using single-input FUZZY P+IDcontroller, Applied Ocean Research, 107, Feb. 2021, 102460.DOI: 10.1016/j.apor.2020.102460.
  24. [24] D. Lu, C. Xiong, Z. Zeng, and L. Lian, Adaptive dynamicsurface control for a hybrid aerial underwater vehiclewith parametric dynamics and uncertainties, IEEE Journalof Oceanic Engineering, 45(3), Jul. 2020, 740–758. DOI:10.1109/JOE.2019.2903742.
  25. [25] Z. Liu, Y. He, L. Yang, and J. Han, Control techniquesof tilt rotor unmanned aerial vehicle systems: A review,Chinese Journal of Aeronautics, 30(1), Feb. 2017, 135–148.DOI: 10.1016/j.cja.2016.11.001.

Important Links:

Go Back