Jianjun Lan


  1. [1] T. Guo, H. Wang, and Y. Liu, Vision-based mobile robot leader-follower control using model predictive control, InternationalJournal of Robotics and Automation, 34(5), 2019, 544–552.
  2. [2] I. Daniyan, K. Mpofu, and F. Ale, Design and simulation ofa dual-arm robot for manufacturing operations in the railcarindustry, International Journal of Robotics and Automation,36(6), 2021, 434–447.
  3. [3] C. Yang, X. Wang, and L. Cheng, Neural-learning-based teler-obot control with guaranteed performance, IEEE Transactionson Cybernetics, 47(10), 2017, 3148–3159.
  4. [4] B. Argall and A. Billard, A survey of tactile human-robotinteractions, Robotics and Autonomous Systems, 58(10), 2010,1159–1176.
  5. [5] S. G¨unter, A. Stemmer, and R. Bischoff, The fast researchinterface for the KUKA lightweight robot, Proc. 2010 IEEEConf. on Innovative Robot Control Architectures for DemandingApplications, Anchorage, AK, 2010, 15–21.
  6. [6] L. Susperregi, B. Sierra, and M. Castrill´on, On the use of alow-cost thermal sensor to improve kinect people detection ina mobile robot, Sensors, 13(11), 2013, 14687–14713.
  7. [7] R. Jain, V.B. Semwal, and P. Kaushik, Deep ensemble learningapproach for lower extremity activities recognition usingwearable sensors, Expert Systems, 16(8), 2021, 1–17.
  8. [8] D.H. Le and C.Y. Lin, Autonomous gluing based on image-based visual servoing, International Journal of Robotics andAutomation, 36(2), 2021, 119–127.
  9. [9] Z. Li, W. Yuan, and S. Zhao, Brain-actuated control ofdual-arm robot manipulation with relative motion, IEEETransactions on Cognitive and Developmental Systems, 63(10),2016, 6419–6428.
  10. [10] X. Xu, A. Song, and D. Ni, Visual-haptic aid teleoperation basedon 3D environment modeling and updating, IEEE Transactionson Industrial Electronics, 11(1), 2017, 51–62.
  11. [11] D. Nicolis, M. Palumbo, and A. Zanchettin, Occlusion-freevisual servoing for the shared autonomy teleoperation of dual-arm robots, IEEE Robotics & Automation Letters, 3(2), 2018,796–803.
  12. [12] J. Yang, Q. Li, and X. Wang, Smart wearable monitoringsystem based on multi-type sensors for motion recognition,Smart Materials and Structures, 30(3), 2021, 612–624.
  13. [13] A. Mukovskiy, C. Vassallo, and M. Naveau, Adaptive synthesisof dynamically feasible full-body movements for the humanoidrobot HRP-2 by flexible combination of learned dynamicmovement primitives, Robotics & Autonomous Systems, 91,2017, 270–283.
  14. [14] L. Roda-Sanchez, C. Garrido-Hidalgo, A. S. Garc´ıa, T. Olivares,and A. Fern´andez-Caballero, Comparison of RGB-D andIMU-based gesture recognition for human-robot interactionin remanufacturing, International Journal of AdvancedManufacturing Technology, 124, 2021, 3099–3111.
  15. [15] S. Shin, R. Tafreshi, and R. Langari, EMG and IMU basedreal-time HCI using dynamic hand gestures for a multiple-DoFrobot arm, Journal of Intelligent and Fuzzy Systems, 35(1),2018, 861–876.
  16. [16] Y. Wei and D. Jia, Research on robotic arm movement graspingsystem based on MYO, Journal of Physics: Conference Series,1754(1), 2021, 1–6.
  17. [17] Y. Fu, D.S. Chen, and X.D. We, Application of optimal-jerk trajectory planning in gait balance training robot,Chinese Journal of Mechanical Engineering, 35(1), 2022,61–70.
  18. [18] Pellois R , Olivier Br¨uls, Human arm motion tracking usingIMU measurements in a robotic environnement, Proc. 21st92International Symposium on Measurement and Control inRobotics, Mons, Belgium, 2018, 65–68.
  19. [19] L. Qian, W. Hao, and W. Peng, Manipulator trajectory planningand control method based on IMU, Proc. Conf. on Robotics,Control and Automation Engineering, Beijing, 2018, 132–136.
  20. [20] J. Rosell, R. Suarez, and C. Rosales, Autonomous motion plan-ning of a hand-arm robotic system based on captured human-like hand postures, Autonomous robots, 31(1), 2011, 87–102.
  21. [21] AJ. Ijspeert, J. Nakanishi, and S. Schaal, Dynamical movementprimitives: Learning attractor models for motor behaviors,Neural Comput, 25(2), 2013, 328–373.
  22. [22] P. Pastor, H. Hoffmann, and T. Asfour, Learning andgeneralization of motor skills by learning from demonstration,Proc. IEEE Conf. on Robotics and Automation, Kobe, 2009,763–768.
  23. [23] B. Fang, X. Wei, F. Sun, H. Huang, Y. Yu, and H. Liu, Skilllearning for human-robot interaction using wearable device,Tsinghua Science and Technology, 24(6), 2019, 654–662.
  24. [24] M.K. ¨Ozg¨oren, Comparative study of attitude controlmethods based on Euler angles, quaternions, angle–axis pairsand orientation matrices, Transactions of the Institute ofMeasurement and Control, 41(5), 2019, 1189–1206.

Important Links:

Go Back