Zhiwei Xing, Xiaorui Zhu, and Yudong Wu


  1. [1] F. Niu and M. Abdel-Mottaleb, View-invariant human activityrecognition based on shape and motion features, Proc. IEEE6th International Symp. Multimedia Software Engineering,Miami, FL, 2004, 546–556.
  2. [2] H. Zheng, C. Sun, and H. Yin, A novel deep modelwith structure optimization for scene understanding, Inter-national Journal of Robotics and Automation, 36(6), 2021,392–401.
  3. [3] J. Shotton, M. Johnson, and R. Cipolla, Semantic textonforests for image categorization and segmentation, Proc. IEEEComputer Vision and Pattern Recognition, 5, Anchorage, AK,2008, 1–8.
  4. [4] C. Lindner, S. Thiagarajah, J. Wilkinson, G. Wallis, and T.Cootes, Fully automatic segmentation of the proximal femurusing random forest regression voting, IEEE Transactions onMedical Imaging, 32(8), 2013, 1462–1472.
  5. [5] K. He, G. Gkioxari, P. Doll´ar, and R. Girshick, Mask R-CNN, Proc. IEEE Computer Vision and Pattern Recognition,Honolulu, HI, 2017, 1–12.
  6. [6] V. Badrinarayanan, A. Kendall, and R. Cipolla, SegNet: Adeep convolutional encoder-decoder architecture for image seg-mentation, CoRR, abs/1511.00561, 2015. [Online]. Available:http://arxiv.org/abs/1511.00561
  7. [7] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello,ENet: A deep neural network architecture for real-timesemantic segmentation, CoRR, abs/1606.02147, 2016. [Online].Available: http://arxiv.org/abs/1606.02147
  8. [8] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, ICNetfor real-time semantic segmentation on high-resolutionimages, CoRR, abs/1704.08545, 2017. [Online]. Available:http://arxiv.org/abs/1704.08545
  9. [9] E. Romera, J. M. ´Alvarez, L. M. Bergasa, and R. Arroyo,ERFNet: Efficient residual factorized ConvNet for real-timesemantic segmentation, IEEE Transactions on IntelligentTransportation Systems, 19(1), 2018, 263–272.
  10. [10] X. Zhang, X. Zhou, M. Lin, and J. Sun, ShuffleNet: Anextremely efficient convolutional neural network for mobiledevices, CoRR, abs/1707.01083, 2017. [Online]. Available:http://arxiv.org/abs/1707.01083
  11. [11] Y. Wang, Q. Zhou, J. Liu, J. Xiong, and L. J. Latecki,LedNet: A lightweight encoder-decoder network for real-timesemantic segmentation, Proc. IEEE International Conf. onImage Processing (ICIP), Taipei, 2019, 1860–1864.
  12. [12] T. Wu, S. Tang, R. Zhang, J. Cao, and Y. Zhang,CGNet: A light-weight context guided network for semanticsegmentation, IEEE Transactions on Image Processing, 30(1),2021, 1169–1179.
  13. [13] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H.Kelly, and A. J. Davison, SLAM++: Simultaneous localisationand mapping at the level of objects, Proc. IEEE Conf. onComputer Vision and Pattern Recognition, Portland, OR, 2013,1352–1359.
  14. [14] A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg,Joint semantic segmentation and 3d reconstruction frommonocular video, in D. Fleet, T. Pajdla, B. Schiele, and T.Tuytelaars (eds.), Computer Vision – ECCV. (Cham: SpringerInternational Publishing, 2014), 703–718.
  15. [15] M. Grinvald, F. Furrer, T. Novkovic, J. J. Chung, C.Cadena, R. Siegwart, and J. Nieto, Volumetric instance-awaresemantic mapping and 3D object discovery, IEEE Robotics andAutomation Letters, 4(3), 2019, 3037–3044.
  16. [16] J. St¨uckler and S. Behnke, Multi-resolution surfel mapsfor efficient dense 3D modeling and tracking, Journal ofVisual Communication and Image Representation, 25(1), 2014,137–147.11
  17. [17] J. McCormac, A. Handa, A. J. Davison, and S. Leutenegger,SemanticFusion: Dense 3D semantic mapping with convolu-tional neural networks, CoRR, abs/1609.05130, 2016. [Online].Available: http://arxiv.org/abs/1609.05130
  18. [18] T. D. Dung and G. Capi, Application of neural networks forrobot 3D mapping and annotation using depth image camera,International Journal of Robotics and Automation, 37(6), 2022,529–536.
  19. [19] R. Mur-Artal and J. Tard´os, ORB-SLAM2: An open-sourceslam system for monocular, stereo and RGB-D cameras, IEEETransactions on Robotics, 33(15), 2017, 1255–1262.
  20. [20] N. Smolyanskiy, A. Kamenev, and S. Birchfield, On theimportance of stereo for accurate depth estimation: Anefficient semi-supervised deep neural network approach, Proc.IEEE/CVF Conf. on Computer Vision and Pattern RecognitionWorkshops (CVPRW), Salt Lake City, UT, 2018, 1120–1128.
  21. [21] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, andS. S¨usstrunk, SLIC superpixels compared to state-of-the-artsuperpixel methods, IEEE Transactions on Pattern Analysisand Machine Intelligence, 34(11), 2012, 2274–2282.
  22. [22] K. Wang, F. Gao, and S. Shen, Real-time scalable densesurfel mapping, Proc. International Conf. on Robotics andAutomation (ICRA), Montreal, QC, 2019, 6919–6925.
  23. [23] A. Dai, M. Nießner, M. Zollh¨ofer, S. Izadi, and C. Theobalt,BundleFusion: Real-time globally consistent 3d reconstructionusing on-the-fly surface re-integration, ACM Transactions onGraphics, 36(7), 2017, 1–18.
  24. [24] O. K¨ahler, V. A. Prisacariu, and D. W. Murray, Real-time large-scale dense 3D reconstruction with loop closure, Proc. EuropeanConf. on Computer Vision, Amsterdam, 2016, 500–516.

Important Links:

Go Back