Ilesanmi Daniyan,∗ Khumbulani Mpofu,∗ Felix Ale,∗∗ and Moses Oyesola∗


  1. [1] J. Krüger, G. Schreck, and D. Surdilovic, Dual arm robot for flexible and cooperative assembly, CIRP Annals – Manufacturing Technology, 60(1), 2011, 5–8.
  2. [2] C. Smith, Y. Karayiannidis, L. Nalpantidis, et al., Dual arm manipulation – A survey, Robotics and Autonomous Systems, 60(10), 2012, 1340–1353.
  3. [3] Chen-Gang, Li-Tong, Chu-Ming, J.-Q. Xuan, and S.-H. Xu, Review on kinematics calibration technology of serial robots, International Journal of Precision Engineering and Manufacturing, 15(8), 2014, 1759–1774.
  4. [4] K. Alexopoulos, D. Mavrikios, and G. Chryssolouris, ErgoToolkit: An ergonomic analysis tool in a virtual manufacturing environment, International Journal of Computer Integrated Manufacturing, 26(5), 2012, 440–452.
  5. [5] P. Tsarouchi, S. Makris, G. Michalos, et al., ROS based coordination of human robot cooperative assembly tasks – An industrial case study, Procedia CIRP, 37, 2015, 254–259.
  6. [6] P. Tsarouchi, S. Makris, and G. Chryssolouris, Human–Robot interaction review and challenges on task planning and programming, International Journal of Computer Integrated Manufacturing, 29(8), 2016, 916–931.
  7. [7] S. Makris, G. Michalos, A. Eytan, and G. Chryssolouris, Cooperating robots for reconfigurable assembly operations: Review and challenges, Procedia CIRP, 3, 2012, 346–351.
  8. [8] B. Gleeson, K. Maclean, A. Haddadi, E. Croft, and J. Alcazar, Gestures for industry intuitive human-robot communication from human observation, 8th ACM/IEEE International Conf. on Human-Robot Interaction (HRI), Tokyo, Japan, 2013, 349–356. doi:10.1109/HRI.2013.6483609.
  9. [9] G. Michalos, S. Makris, P. Tsarouchi, T. Guasch, D. Kontovrakis, and G. Chryssolouris, Design considerations for safe human–robot collaborative work-places, Procedia CIRP, 37, 2015, 248–253.
  10. [10] J. Krüger, V. Katschinski, D. Surdilovic, and G. Schreck, PISA: Next generation of flexible assembly systems – From initial ideas to industrial prototypes, Proc. of 41st International Symposium on Robotics, Munich, Germany, 2010, 84–89.
  11. [11] I. Iglesiasa, M.A. Sebastiána, and J.E. Aresc, Overview of the state of robotic machining: Current situation and future potential, Procedia Engineering, 132, 2015, 911–917.
  12. [12] J. Brüning, B. Denkena, M.A. Dittrich, and H.-S. Park, Simulation based planning of machining processes with industrial robots, Procedia Manufacturing, 6, 2016, 17–24.
  13. [13] B. Denkena, B. Bergmann, and T. Lepper, Design and optimization of a machining robot, Procedia Manufacturing, 14, 2017, 89–96. 445
  14. [14] Z. Pan, J. Polden, N. Larkin, S. Van Duin, and J. Norrish, Recent progress on programming methods for industrial robots, Robotics and Computer Integrated Manufacturing, 28(2), 2012, 87–94.
  15. [15] M.F. Zaeh and O. Roesch, Improvement of the machining accuracy of milling robots, Production Engineering – Research and Development, 8(6), 2014, 737–744.
  16. [16] W. Lin and H. Luo, Robotic welding, Handbook of manufacturing engineering and technology, (London: Springer-Verlag, 2014), 1–36. doi:10.1007/978-1-4471-4976-7_106-1.
  17. [17] P. Kah, M. Shrestha, E. Hiltunen, and J. Martikainen, Robotic arc welding sensors and programming in industrial applications, International Journal of Mechanical and Materials Engineering, 10(13), 2015, 1–16.
  18. [18] J. Fleischer, V. Schulze, J. Burtscher, and S. Dosch, Robotbased guiding of extrusion profiles-increase of guiding accuracy by considering the temperature-dependent effects, Procedia CIRP, 18, 2014, 21–26.
  19. [19] L. Wang, A. Mohammed, and M. Onori, Remote robotic assembly guided by 3D models linking to a real robot, CIRP Annals – Manufacturing Technology, 63, 2014, 1–4.
  20. [20] A. Zhu and Y. Chen, A machine-learning-based algorithm for detecting a moving object, International Journal of Robotics and Automation, 31(5), 2015, 402–408.
  21. [21] Q. Han, S. Sun, and H. Lang, Leader-follower formation control of multi-robots based on bearing-only observations, International Journal of Robotics and Automation, 34(2), 2019, 120–129.
  22. [22] C. Pupaza, G. Constantin, and T. Negrila, Computer aided engineering of industrial robots, Proceedings in Manufacturing Systems, 9(2), 2014, 87–92.
  23. [23] M. Bugday and M. Karali, Design and optimization of industrial robot arm to minimize redundant weight, Engineering Science and Technology, an International Journal, 22, 2019, 346–352.
  24. [24] P. Tsarouchia, S. Makrisa, G. Michalosa, et al., Robotized assembly process using dual arm robot, Procedia CIRP, 23, 2014, 47–52.
  25. [25] S. Makris, P. Tsarouchi, A-S. Matthaiakis, et al., Dual arm robot in cooperation with humans for flexible assembly, CIRP Annals – Manufacturing Technology, 66, 2017, 13–16.
  26. [26] M. Rodrigues, M. Kormann, C. Schuhler, and P. Tomek, Robot trajectory planning using OLP and structured light 3D machine vision, in G. Bebis, et al. (eds.), Advances in visual computing. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, 2013, 8034, 244–253.
  27. [27] S.K. Ong, J.W.S. Chong, and A.Y.C. Nee, A novel augmented reality based robot programming and path planning methodology, Robotics and Computer-Integrated Manufacturing, 26(3), 2010, 240–249.
  28. [28] H. Fang, S.K. Ong, and A.Y.C. Nee, Robot path and endeffector orientation planning using augmented reality, Procedia CIRP, 3, 2012, 191–196.
  29. [29] B. Denkena and T. Lepper, Enabling an industrial robot for metal cutting operations, Procedia CIRP, 35, 2015, 79–84.
  30. [30] N. Papakostas, K. Alexopoulos, and A. Kopanakis, Integrating digital manufacturing and simulation tools in the assembly design process: A cooperating robots cell case, CIRP Journal of Manufacturing Science and Technology, 4(1), 2011, 96–100.
  31. [31] M. Hofener and T.A. Schuppstuhl, Method for increasing the accuracy of on-workpiece machining with small industrial robots for composite repair, Production Engineering – Research and Development, 8, 2014, 701–709.
  32. [32] Y. Bu, W. Liao, W. Tian, J. Zhang, and L. Zhang, Stiffness analysis and optimization in robotic drilling application, Precision Engineering, 49, 2017, 388–400.
  33. [33] G.-C. Vosniakos and E. Matsas, Improving feasibility of robotic milling through robot placement optimization, Robotics and Computer-Integrated Manufacturing, 26, 2010, 517–525.
  34. [34] E. Abele, K. Schutzer, and M. Pischan, Tool path adaption based on optical measurement data for milling with industrial robot, Production Engineering: Research and Development, 6, 2012, 459–465.
  35. [35] M. Slamani, S. Gauthier, and J.-F. Chatelain, A study of the combined effects of machining parameters on cutting force components during high speed robotic trimming of CFRPs, Measurement, 59, 2015, 268–283.
  36. [36] I.A. Daniyan, M.O. Oyesola, K. Mpofu, and S. Nwankwo, Application of the fourth industrial revolution for high volume production in the rail car industry, Chapter 10 in A. Akdogan and A.S. Vanli (eds.), Mass production, (London: Intech Open, 2019), 88703, 153–167.
  37. [37] R.S. Khurmi and J.K.A. Gupta, Textbook of machine design, (New Delhi: Eurasia Publishing House Ltd., 2005).
  38. [38] M. Klumpp, Automation and artificial intelligence in business logistics systems: Human reactions and collaboration requirements, International Journal of Logistics Research and Applications, 21(3), 2018, 224–242.
  39. [39] B. Matebese, D. Withey, and M.K. Banda, Path planning with the leapfrog method in the presence of obstacles, IEEE Int. Conf. Rob. Biom. (ROBIO), Qingdao, China, 2016, 613–618.
  40. [40] B. Matebese, D. Withey, and M. Banda, Optimal paths for a mobile manipulator using the leapfrog method, 2019 SAUPEC/RobMech/PRASA Conf., Bloemfontein, South Africa, 2019, 42–48. 978-1-7281-0369-3/19.
  41. [41] A. Vamsikrishna, A.D. Mahindrakar, and S. Tiwari, Numerical and experimental implementation of leapfrog algorithm for optimal control of a mobile robot, Indian Control Conf. (ICC), 2017, 123–128.
  42. [42] X. Yang, J. Chen, and S.X. Yang, Dynamic bioinspired neural network for multi-robot formation control in unknown environments, International Journal of Robotics and Automation, 30(3), 2015, 256–266.
  43. [43] G. Rishwaraj, S.G. Ponnambalam,, and R.K. Chetty, Multirobot formation control using a hybrid posture estimation strategy, International Journal of Robotics and Automation, 29(4), 2014, 256–266.
  44. [44] P.C. Chen, J. Wan, A.N. Poo, and S.S. Ge, Formation and zoning control of multi-robot systems, International Journal of Robotics and Automation, 26(1), 2011, 35–48.
  45. [45] U. Asif and J. Iqbal, Motion planning of a walking robot using attitude guidance, International Journal of Robotics and Automation, 27(1), 2012, 41–48.
  46. [46] C. Ma, F. Yu, and Z. Luo, Simulations and experimental research on a novel soft-terrain hexapod robot, International Journal of Robotics and Automation, 30(3), 2015, 247–255.
  47. [47] L. Ssebazza and Y.-J. Pan, DGPS-based localization and path following approach for outdoor wheeled mobile robots, International Journal of Robotics and Automation, 30(1), 2015, 13–25.

Important Links:

Go Back