COMPRESSIVE SENSING WITH WEIGHTED LOCAL CLASSIFIERS FOR ROBOT VISUAL TRACKING

Wenhui Huang, Jason Gu, and Xin Ma

References

  1. [1] E. Candes and T. Tao, Decoding by linear programming, IEEE Transactions on Information Theory, 51(12), 2005, 4203–4215.
  2. [2] E. Candes and T. Tao, Near-optimal signal recovery fromrandom projections: Universal encoding strategies? IEEETransactions on Information Theory, 52(12), 2006, 5406–5425.
  3. [3] K. Zhang, L. Zhang and M. Yang, Fast compressive track-ing, IEEE Transactions on Pattern Analysis and MachineIntelligence, 36(10), 2014, 2002–2015.
  4. [4] Y. Zheng, N. Cao, T. Wimalajeewa, and P.K. Varshney,Compressive sensing based probabilistic sensor management for target tracking in wireless sensor networks, IEEE Transactions on Signal Processing, 63(22), 2015, 6049–6060.
  5. [5] K. Zhang, L. Zhang, and M.-H. Yang, Real-time compres-sive tracking,Proceedings of the 12th European Conference on Computer Vision, Firenze, Italy, 2012, 864–877.
  6. [6] H. Li, C. Shen, and Q. Shi, Real-time visual tracking using compressive sensing, Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA, 2011, 1305–1312.
  7. [7] G. Li, W. Wang, Y. Wang, S. Yuan, W. Yang, N. Xi, andL. Liu, Nano-manipulation and Real-time CompressiveTracking, IEEE Transactions on Nanotechnology, 14(5), 2015,837–846.
  8. [8] S. Bae and M. Kim, Object tracking based on online par-tial instance learning with multiple local strong classifiers, Proceedings of the 21th IEEE International Conference on Image Processing, Paris, France, 2014, 358–362.
  9. [9] H. Lang, Y. Wang and C.W. De Silva, Vision based objectidentification and tracking for mobile robot visual servo control, Proceedings of the 8th IEEE International Conference on Control and Automation, Xiamen, China, 2010, 92–96.
  10. [10] Z. Zhang, R. Sa and Y. Wang, A real time object tracking approach for mobile robot visual servo control, Proceedings of the 1st Asian Conference on Pattern Recognition, Beijing, China, 2011, 500–504.
  11. [11] J. Jean and F. Lian, Robust visual servo control of a mobile robot for object tracking using shape parameters, IEEE Transactions on Control Systems Technology, 20(6), 2012, 1461–1472.
  12. [12] Y. Iwatani, K. Watanabe and K. Hashimoto, Visual tracking with occlusion handling for visual servo control, Proceedings of the 19th IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 2008, 101–106.
  13. [13] J.L. Buessler, J.P. Urban, G. Hermann, and H. Kihl, Color histogram algorithms for visual robot control, International Journal of Robotics and Automation, 20 (2), 2005, 86–93.
  14. [14] H. Grabner, M. Grabner, and H. Bischof, Real-time tracking via online boosting, Proceedings of the 17th British Machine Vision Conference, Edinburgh, UK, 2006, 47–56.
  15. [15] B. Babenko, M. Yang and S. Belongie, Robust object tracking with online multiple instance learning, IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(8), 2011, 1619–1632.
  16. [16] Z. Kalal, K. Mikolajczyk and J. Matas, Tracking-learning-detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7), 2012, 1409–1422.
  17. [17] D. Achlioptas, Database-friendly random projections: Johnson-Lindenstrauss with binary coins, Journal of Computer and System Sciences, 66(4), 2003, 671–687.
  18. [18] E. Bingham and H. Mannila, Random projection in dimen-sionality reduction: Applications to image and text data, Proceedings of the 7th International Conference on Knowledge Discovery and Data Mining, 2001, 245–250.
  19. [19] N. Gordon, D. Salmond and A.F.M. Smith, Novel approachto nonlinear/non-Gaussian Bayesian state estimation, IEEProceedings Part F: Radar and Signal Processing, 140(2), 1993, 107–113.
  20. [20] J. Ning, L. Zhang, D. Zhang, and C. Wu, Robust mean-shift tracking with corrected background-weighted histogram, IET Computer Vision, 6(1), 2012, 62–69.
  21. [21] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, PROST: Parallel robust online simple tracking, Proceedings of the 23th IEEE Conference on Computer Vision Pattern Recognition, San Francisco, USA, 2010, 723–730.
  22. [22] D. Ross, J. Lim, R. Lin, and M.-H. Yang, Incremental learning for robust visual tracking, International Journal of Computer Vision, 77(1), 2008, 125–141.
  23. [23] M. Everingham, L. Gool, C. Williams, J. Winn, and A.Zisserman, The Pascal visual object class (VOC) challenge,International Journal of Computer Vision, 88(2), 2010,303–338.

Important Links:

Go Back