ENERGY STORAGE CAPACITY AND FORCE–STIFFNESS INTERACTIONS IN DIFFERENT STIFFNESS ADJUSTMENT MECHANISMS

Amir Jafari and Nima Jamshidi

References

  1. [1] A. Bicchi and G. Tonietti, Fast and soft arm tactics: Dealing with the safety-performance trade-off in robot arms design and control, IEEE Robotics and Automation Magazine, 11(2), 2004, 22–33.
  2. [2] B. Vanderborght, B. Verrelst, and R. Van Ham, Development of a compliance controller to reduce energy consumption for bipedal robots, Autonomous Robots, 15(6), 2008, 419–434.
  3. [3] S. Stramigioli, G. Van Oort, and E. Dertien, A concept for a new energy efficient variable stiffness actuator, The 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 671–675.
  4. [4] P. Cherelle, A. Matthys, V. Grosu, B. Brackx, M. Van Damme, and B. Vanderborght, Design of the amp-foot 2.0: An active trans-tibial prosthesis that mimics able-bodied ankle behavior, The 2nd Joint International Conference on Multibody System Dynamics, 2010.
  5. [5] M. Bureau, T. Keller, J. Perry, R. Velik, and J. Veneman, Passive multirate wave communications for haptic interaction in slow virtual environments, 2011 IEEE International Conference on Rehabilitation Robotics (ICORR), 2011, 1–4.
  6. [6] P. Beyl, P. Cherelle, K. Kanepen, and D. Lefebder, A proof-of-concept exoskeleton for robot assisted rehabilitation of gait, Proceedings of IFMBE 4th European Conference of the International Federation for Medical and Biological Engineering, 2009, 1825–1829 (Heidelberg: Springer Berlin).
  7. [7] S. Alaimo, L. Pollini, J.-P, Bresciani, and H. Bulthoff, Evaluation of direct and indirect haptic aiding in an obstacle avoidance task for tele-operated systems (Red Hook, NY: International Federation of Automatic Control (IFAC), 2011).
  8. [8] M. Catalano, G. Griolo, M. Garabini, F. Bonomo, M. Mancinit, N. Tsagarakis, and A. Bicchi, Vsa-cubebot: A modular variable stiffness platform for multiple degrees of freedom robots, Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA), 2011, 5090–5095.
  9. [9] C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Abu-Shaeffer, and E. Burdet, Human-like adaptation of force and impedance in stable and unstable interactions, IEEE Transaction on Robotics, 27(5), 2011, 918–930.
  10. [10] M. Garabibi, A. Passagila, F. Belo, P. Salaris, and A. Bicchi, Optimality principles in stiffness control: The vsa kick, Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA), 2012, 3341–3346.
  11. [11] Z. Li, N. Tsagarakis, and D. Caldwell, A passivity based admittance control for stabilizing the compliant humanoid COMAN, Proceedings of 2012 IEEE-RAS International Conference on Humanoid Robots, 44–49.
  12. [12] S. Migliore, E. Brown, and S. DeWeerth, Biologically inspired joint stiffness control, Proceedings of 2005 IEEE International Conference on Robotics and Automation (ICRA), 2005, 4508–4513.
  13. [13] J. Hurst, J.E. Chestnutt, and A. Rizzi, The actuator with mechanically adjustable series compliance, IEEE Transaction on Robotics, 26(4), 2010, 597–606.
  14. [14] F. Darden, Conception and realization of pleated pneumatic artificial muscles and their use as compliant actuation elements, PhD thesis, Vrije Universiteit Brussel, Brussels, Belgium, 1999.
  15. [15] A. Bicchi, G. Tonietti, and R. Schiavi, Fast and soft tactile [robot arm design] actuator for machines interacting with humans, IEEE Technical Exhibition Based Conference on Robotics and Automation (ICRA), 2004, 17–18.
  16. [16] R. Schiavi, G. Grioli, S. Sen, and A. Bicchi, Vsa-ii: A novel prototype of variable stiffness actuator for safe and performing robots interacting with humans, Proceedings of 2008 IEEE International Conference on Robotics and Automation (ICRA), 2008, 2171–2176.
  17. [17] M.G. Catalano, G. Grioli, M. Garabini, F. Bonomo,M. Mancini, N. Tsagarakis, and A. Bicchi., VSA-CubeBot:A modular variable stiffness platform for multiple degrees of freedom robots, IEEE International Conference on Robotics and Automation (ICRA), 2011, 4324–4326.
  18. [18] F. Petit, M. Chalon, W. Friedl, M. Grebenstein,A. Abu-Schaeffer, and G. Hirzinger, Bidirectional antagonistic variable stiffness actuation: Analysis, design; implementation, IEEE International Conference on Robotics and Automation (ICRA), 2010, 4189–4198.
  19. [19] O. Eiberger, S. Haddadin, A. Abu-Schaeffer, and G. Hirzinger, On joint design with intrinsic variable compliance: Derivation of the DLR QA-Joint, IEEE International Conference on Robotics and Automation (ICRA), 2010, 1050–1649.
  20. [20] R. Van Ham, B. Vanderborght, M. Van Damme, B. Ver-relst, and D. Lefeber, Mechanically adjustable and controllable compliance, equilibrium position actuator (MECCEPA), IEEE International Conference on Robotics and Automation (ICRA), 2006, 2195–2200.
  21. [21] B. Vanderborght, N.G. Tsagarakis, R. Van Ham, I. Thorson, and D.G. Caldwell, MACCEPA 2.0: Compliant actuator used for energy efficient hopping robot Chobin1D, Autonomous Robots, 31(1), 2011, 55–65.
  22. [22] S. Wolf and G. Hirzinger, A new variable stiffness designs: Matching requirements of the next robot generation, IEEE International Conference on Robotics and Automation (ICRA), 2008, 1741–1746.
  23. [23] S. Wolf, O. Eiberger, S. Haddadin, A. Abu-Schaeffer, and G. Hirzinger, The DLR FSJ: Energy based design of a variable stiffness joint, IEEE International Conference on Robotics and Automation (ICRA), 2011, 5082–5089.
  24. [24] J.J. Park, J.B. Song, and H.S. Kim, Safe joint mechanism based on passive compliance for collision safety, in S. Lee, I. Suh, and M. Kim (eds.), Recent progress in robotics: Viable robotic service to human (Heidelberg: Springer Berlin), volume 370 of Lecture Notes in Control and Information Sciences, 2008, 49–61.
  25. [25] J.J. Park and J.B. Song, Safe joint mechanism using inclined link with springs for collision safety and positioning accuracy of a robot arm, IEEE International Conference on Robotics and Automation (ICRA), 2005, 813–818.
  26. [26] A. Jafari, N.G. Tsagarakis, and D.G. Caldwell, A novel intrinsically energy efficient actuator with adjustable stiffness (AwAS), IEEE Transaction on Mechatronics, 18(1), 2011, 355–365.
  27. [27] A. Jafari, N.G. Tsagarakis, I. Sardellitti, and D.G. Caldwell, A new actuator with adjustable stiffness based on a variable ratio lever mechanism (AwAS-II), IEEE Transaction on Mechatronics, 19(1), 2012, 55–63.
  28. [28] N. Tsagarakis, I. Sardellitti, and D. Caldwell, A new variable stiffness actuator (CompACT-VSA); Design and modeling, IEEE International Conference on Intelligent Robotics Systems (IROS), 2011, 378–383.
  29. [29] L.C. Visser, R. Carloni, S. Stramigioli, Energy-efficient variable stiffness actuators, IEEE Transaction on Robotics, 27, 2011, 865–875.
  30. [30] R. Carloni, L.C. Visser, S. Stramigioli, Variable stiffness actuators: A port-based power-flow analysis, IEEE Transaction on Robotics, 28, 2012, 1–11.
  31. [31] A. Jafari, N.G. Tsagarakis, I. Sardellitti, and D.G. Caldwell, How design can affect the energy required to regulate the stiffness in variable stiffness actuators, IEEE International Conference on Robotics and Automation (ICRA), 2012, 2792–2797.
  32. [32] A. Jafari, Coupling between the output force and stiffness in different variable stiffness actuators, Actuators, 3(3), 2014, 270–284.
  33. [33] A. Jafari, N. Tsagarakis, B. Vanderbourght, and D. Caldwell, A novel actuator with adjustable stiffness (AwAS), IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2011, 4201–4206.
  34. [34] A. Jafari, N. Tsagarakis, and D. Caldwell, AwAS-II: A new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio, IEEE International Conference on Robotics and Automation (ICRA), 2011, 4638–4640.
  35. [35] A. Jafari, N. Tsagarakis, and D. Caldwell, Exploiting natural dynamics for energy minimization using an Actuator with Adjustable Stiffness (AwAS), IEEE International Conference on Robotics and Automation (ICRA), 2011, 4632–4637.
  36. [36] A. Jafari, N. Tsagarakis, and D. Caldwell, Energy efficient actuators with adjustable stiffness: A review on AwAS, AwAS-II and CompACT VSA changing stiffness based on lever mechanism, Industrial Robot: An International Journal, 42(3), 2015, 242–251.

Important Links:

Go Back