Fei-Hung Hung, Hung-Wen Chiu

View Full Paper


  1. [1] T. Barrett, D. Troup, S. Wilhite, P. Ledoux, C. Evangelista, I. Kim, M. Tomashevsky, K. Marshall, K. Phillippy, P. Sherman, R. Muertter, M. Holko, O. Ayanbule, A. Yefanov & A. Soboleva, NCBI GEO: archive for functional genomics data sets—10 years on, Nucleic Acids Res., 39(Database issue), 2011, D1005–D1010.
  2. [2] M. Kanehisa, S. Goto, S. Furumichi, M. Tanabe & M. Hirakawa, KEGG for representation and analysis of molecular networks involving diseases and drugs, Nucleic Acids Res., 38(Database issue), 2010, D355–D360.
  3. [3] G. Bebek & J. Yang, PathFinder: mining signal transduction pathway segments from protein-protein interaction networks, BMC Bioinformatics, 8, 2007, 335–350.
  4. [4] M. Steffen, A. Petti, J. Aach, P. D’haeseleer & G. Church, Automated modelling of signal transduction networks, BMC Bioinformatics, 3, 2002, 34–44.
  5. [5] Y. Liu & H. Zhao, A computational approach for ordering signal transduction pathway components from genomics and proteomics Data, BMC Bioinformatics, 5, 2007, 158.
  6. [6] J. Scott, T. Ideker, R. Karpa & R. Sharan, Efficient algorithms for detecting signaling pathways in protein interaction networks, J Comput Biol., 13(2), 2006, 133–144.
  7. [7] D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth & P. Minguez, The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored, Nucleic Acids Res., 39(Database issue), 2010, D561–D568.
  8. [8] D. Ruths, J. Tseng, L. Nakhleh & P. Ram, De Novo Signaling Pathway Predictions Based on Protein-Protein Interaction, Targeted Therapy and Protein Microarray Analysis, LNCS, 4532, 2007, 108–118.
  9. [9] H. Chuang, E. Lee, Y. Liu, D. Lee & T. Ideker, Networkbased classification of breast cancer metastasis, Mol. Syst. Biol., 3, 2007, 140.
  10. [10] YP. Yu, D. Landsittel, L. Jing, J. Nelson, B. Ren, L. Liu, C. McDonald, R. Thomas, R. Dhir, S. Finkelstein, G. Michalopoulos, M. Becich & JH. Luo, Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy, J Clin. Oncol., 22(14), 2004, 2790-2779.
  11. [11] UR. Chandran, C. Ma, R. Dhir, M. Bisceglia, M. LyonsWeiler, W. Liang, G. Michalopoulos, M. Becich & FA. Monzon, Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process, BMC Cancer, 7(64), 2007.
  12. [12] M. Thomasson, H. Hedman, T. Junttila, K. Elenius, B. Ljungberg & R. Henriksson, ErbB4 is downregulated in renal cell carcinoma–a quantitative RT-PCR and immunohistochemical analysis of the epidermal growth factor receptor family, Acta Oncol., 43(5), 2004, 453–459.
  13. [13] T. Behbahani, C. Thierse, C. Baumann, D. Holl, P. Bastian, A. von Ruecker, S. Müller, J. Ellinger & S. Hauser, Tyrosine kinase expression profile in clear cell renal cell carcinoma, World J Urol., [Epub ahead of print].
  14. [14] T. Shi, L. Liou, P. Sadhukhan, Z. Duan, A. Novick, J. Hissong, A. Almasan & J. DiDonato, Effects of resveratrol on gene expression in renal cell carcinoma, Cancer Biol. Ther., 3(9), 2004, 882–888.
  15. [15] J. Copland, B. Luxon, L. Ajani, T. Maity, E. Campagnaro, H. Guo, S. LeGrand, P. Tamboli & C. Wood, Genomic profiling identifies alterations in TGFbeta signaling through loss of TGFbeta receptor expression in human renal cell carcinogenesis and progression, Oncogene, 22(39), 2003, 8053–8062.
  16. [16] M. Magrane & U. Consortium, UniProt Knowledgebase: a hub of integrated protein data, Database (Oxford), 2011, 2011, bar009.
  17. [17] K. Brown & I. Jurisica, Unequal evolutionary conservation of human protein interactions in interologous networks, Genome Biol., 8(5), 2007, R95.
  18. [18] F. Belinky, I. Bahir, G. Stelzer, S. Zimmerman, N. Rosen, N. Nativ, I. Dalah, T. Iny Stein, N. Rappaport, T. Mituyama, M. Safran & D. Lancet, Non-redundant compendium of human ncRNA genes in GeneCards, Bioinformatics, 29(2), 2013 255-61. 19 Table 2 The test result of locating points at three groups of GDS2545 Family Member or Alias Name Group A Group B Group C Significant p-value Significant p-value Significant p-value GSTP1 DFN7, FAEES3, GST3, GSTP, GSTP1 , PI GSTP1 0.000003 GSTP1 0.000000003076 NKX3-1 BAPX2; NKX3; NKX3.1; NKX3A PTEN 10q23del; BZS; CWS1; DEC; GLM2; MHAM; MMAC1; PTEN1; TEP1 TEP1 0.000001723 GF EGF, PDGFA, PDGFB, INS, PDGFC_D, IGF1, TGFA, PDGFA 0.00493 IGF1 0.006689 INS 0.00003993 IGF1 0.00002488 GFR EGFR, ERBB1, FGFR1, PDGFRA, ERBB2, HER2, INSRR, IGF1R, PDGFRB, FGFR2 FGFR2 0.002864 FGFR1 0.001295 EGFR 0.006172 ERBB2 0.000000005907 FGFR2 0.0000217 IGF1R 0.0009311 FGFR2 0.0000009558 PI3K PIK3CA, PIK3CB, PIK3CD, PIK3CG, PIK3R1, PIK3R2, PIK3R3, PIK3R5, PIK3C2A, PIK3C2B, PIK3C2G PIK3CG 0.007083 PIK3CA 0.00005876 PIK3R1 0.000006806 PIK3R2 0.0474 PIK3C2A 0.002192 PIK3C2B 0.0436 PDK1 PDPK1; PDK1; PDPK2; PRO0461 PDPK1 0.02111 PDK1 0.003776 PKB/Akt AKT1, AKT2, AKT3 AKT2 0.0142 AKT2 0.0335 AKT3 0.001146 SRD5A2 SRD5A2, MGC138457 Grb2 GRB2, ASH; EGFRBP-GRB2; Grb3-3; MST084; MSTP084; NCKAP2 GRB2 0.009916 GRB2 0.01819 GRB2 0.000000000001861 SOS SOS1, SOS2 SOS1 0.02208 SOS2 0.02002 Ras HRAS; C-BAS/HAS; C-H-RAS; C-HARAS1; CTLO; H-RASIDX; HAMSV; HRAS1; KRAS; NRAS; RASH1 HRAS 0.01225 KRAS 0.009854 HRAS 0.00003995 KRAS 0.02608 Raf BRAF, RAF1, ARAF, ARAF1, CRAF, PKS2; RAFA1 ARAF 0.0000000009557 MEK1 MAP2K1, MEK1, MAPKK1 , MKK1; PRKMK1, MAP2K1 0.02523 MEK2 MAP2K2, MEK2, MAPKK2, MKK2; PRKMK2 MAP2K2 0.001385 MAP2K2 0.005339 MAP2K2 0.00005548 ERK MAPK1, MAPK2, MAPK3, ERK-1; ERK1; ERT2, PRKM1; PRKM2, PRKM3 MAPK1 0.01324 AR AR, AIS; DHTR; HUMARA; HYSP1; KD; NR3C4; SBMA; SMAX1; TFM AR 0.0032 AR 0.000000000004022 HSP htpG, HSP90A, HSP90B, HSP90B1, TRA1, ECGP; GP96; GRP94 HSP90B1 0.00000000003789 Casp9 CASP9, APAF-3; APAF3; CASPASE-9c; ICE-LAP6; MCH6; PPP1R56 CASP9 0.04144 BAD BAD, BBC2, BBC6, BCL2L8 BAD 0.03744 FKHR FOXO1, FKH1; FKHR; FOXO1A FOXO1 0.006002 FOXO1 0.00007959 p21 CDKN1A, P21, CIP1, CAP20; CDKN1; MDA-6; SDI1; WAF1; p21CIP1 CDKN1A 0.03011 p27 CDKN1B, P27, KIP1, CDKN4, MEN1B; MEN4; P27KIP1 MDM2 MDM2, ACTFS; HDMX; hdm2 MDM2 0.0007657 GSK3 GSK3A, GSK3B GSK3A 0.000428 GSK3B 0.000000000541 GSK3B 0.006835 IKKA IKBKA, IKKA, CHUK CHUK 0.00003134 CHUK 0.003317 IKKB IKBKB, IKKB IKBKB 0.03559 IKBKB 0.03504 IKKG IKBKG, IKKG, NEMO IKBKG 0.00163 mTOR MTOR, FRAP, FRAP1; FRAP2; RAFT1; RAPT1 MTOR 0.000002106 CREB1 CREB1 CREB1 0.00007958 CREB2 ATF4, CREB2 ATF4 0.00002567 CREB3 CREB3, LUMAN; LZIP CREB3 0.000002061 CREB5 CREB5; CREBPA CREB5 0.03238 CREB3L1 CREB3L1 CREB3L1 0.0002449 CREB3L1 0.002783 CREB3L2 CREB3L2 CREB3L2 0.003839 CREB3L2 0.003317 CREB3L3 CREB3L3 CREB3L4 CREB3L4 βCatenin CTNNB1, CTNNB; MRD19; armadillo IkB NFKBIA, IKBA; MAD-3; NFKBI NFKBIA 0.01786 NFkB NFKB1, RELA, NFKB2, RELB, REL RELB 0.006975 NFKB1 0.00001596 RELA 0.03504 REL 0.02375 CDK2 CDK2, p33 CDK2 0.00003416 cyclin E CCNE, CCNE1, CCNE2, CYCE2 CCNE2 0.00003416 Rb RB1, RB; pRb; OSRC; pp110; p105-Rb E2F E2F1, E2F2, E2F3 E2F2 0.01107 E2F2 0.03911 E2F3 0.000000166 CBP EP300, CREBBP, KAT3, CBP, RSTS CREBBP 0.02731 p53 TP53, P53, BCC7; LFS1; TRP53 TP53 0.03197 TP53 0.001042 TCF/LEF TCF7, TCF7L1, TCF7L2, LEF1, TCF7L2 0.0002974 TCF7 0.005841 LEF1 0.005033 TCF7L2 0.003514 LEF1 0.03955 cyclin D1 CCND1, BCL1; D11S287E; PRAD1; U21B31 CCND1 0.000001195 CCND1 0.001473 BCL2 BCL2, PPP1R50 PSA KLK3, APS; KLK2A1; PSA; HK3 KLK3 0.03711 KLK3 0.04634 HK3 0.04221 20 Figure 2. The pathway map A for group A. This map shows the situation from normal to tumor in prostate cancer. The pink ellipses show a node in KEGG prostate cancer pathway map with significant change in gene expression at group A. The orange ellipses show a node in KEGG prostate cancer pathway map without significant change in gene expression at group A, but a hub for pink ellipses in this map. 21 Figure 3. The pathway map B for group B. This map shows the situation from early prostate tumor to primary prostate tumor. The pink ellipses show a node in KEGG prostate cancer pathway map with significant change in gene expression at group B. The orange ellipses show a node in KEGG prostate cancer pathway map without significant change in gene expression at group B, but a hub for pink ellipses in this map. 22 Figure 4. The pathway map C for group C. This map shows the situation from primary prostate tumor to metastatic prostate tumor. The pink ellipses show a node in KEGG prostate cancer pathway map with significant change in gene expression at group C. The orange ellipses show a node in KEGG prostate cancer pathway map without significant change in gene expression at group C, but a hub for pink ellipses in this map.

Important Links:

Go Back