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ABSTRACT 
Biological pathways are the crucial biological mechanisms 
in living cells. The huge volume of genomics and 
proteomics data requires computational methods for 
predicting or reconstructing pathways. Thus, the application 
of protein-protein interaction (PPI) or gene expression 
methods is insufficient to discover meaningful pathways.  
The integration of PPIs and gene profiles is a better 
approach to uncover the regulation of pathway and must be 
utilized well. Previous studies on this topic only focus on 
the gene level or some limited local groups. This study 
presents an approach to finding potential fragments of 
active pathways around known pathways between the 
various stages of diseases. The proposed method used a 
maximum score-based function that integrates genomics 
and proteomics information. This method quantified the 
strength of gene expression change and the degree of 
protein-protein interactions to illustrate global status as 
pathway maps. In this study, we use prostate cancer data as 
an example to explain which potential fragments of 
pathway co-constructed a pathway map of prostate cancer 
at different disease statuses. The resulting map shows a 
possible correspondence between known pathway and 
cancer-related genes that are not on the known pathway. 
Comparing distinct status pathway map reveals a global 
change of different disease states pathway level. The 
pathway map of different disease statuses can provide more 
insight in the progress of cancer. 
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1. Introduction 
 
Bioinformatics has benefitted greatly from advances in 
computer science and biology laboratory techniques, an era 
of rapid accumulation of genomic and proteomic 
information. For example, the Gene Expression Omnibus 
(GEO) is one of several public genomic data repositories 
[1]. The GEO includes 12,211 platforms, 1,024,125 
samples, 42,673 series and 3,413 datasets. Computational 
biology methods can help researchers obtain a better 
understanding of complex systems (e.g., protein-protein 
interaction network, regulatory pathways or cancer 

mechanisms). A signal transduction pathway is a main 
respondence for extracellular excitement. When signal 
pathways are involved in activating apoptosis, cell cycle, or 
proliferation, they have a comprehensive effect on 
upstream/downstream relationships between interacting 
proteins/genes. The widely used pathway database is the 
Kyoto Encyclopedia of Genes and Genomes (KEGG). The 
KEGG is a database that integrates genomic, chemical, and 
systemic functional information [2]. The KEGG currently 
includes 275,060 pathways. Researchers can access these 
online resources easily through their web-based interface.  
Early pathway prediction methods, such as PathFinder, 
were based only on PPIs. PathFinder is a tool for finding 
potential pathways [3] that maps GO annotations onto the 
PPI network and applies the association rule method to 
identify pathways with high confidence. The recall rate is 
78% and precision rate is 40%. When researchers 
investigate the importance of gene regulation, they often 
used PPIs and gene expression data to reconstruct some 
simple signaling networks [4-6]. One method, NetSearch, 
tried to integrate PPI and gene expression [4]. This 
approach used gene expression data to cluster proteins and 
scored protein by clustering, and was capable of 
reconstructing MAPK signal pathways. The recall rate for 
this approach is 44%, with a precision rate of 24%. Ruth et 
al. built PathwayOracle Toolkit. This toolkit applies the 
STRING (Search Tool for the Retrieval of Interacting 
Genes/Proteins) method [7] to score PPI data, and then 
adopts Eppstein’s k-shortest algorithm is used for pathway 
prediction [8]. Some of the methods mentioned above only 
use PPI, which does not sufficiently represent the entire 
pathway, and some are limited to reconstructing specific 
species. Even approaches that consider gene-level data only 
apply that data for clustering, and fail to exhibit true gene 
expression values. 
Researchers have recently identified many disease markers 
by analyzing genome-wide and proteomic-wide information. 
However, investigators have shown that many well-known 
risk factors may be partial emphases rather than global 
mechanisms of disease. To identify a marker for more 
complete performance of disease is a challenging. A sub-
network marker is more reproducible than individual 
marker genes selected without network information [9]. 
Most previous methods cannot identify molecular changes 
and relationships on the environmental side. 
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In the past researches of prostate cancer, Yu et al. tested a 
comprehensive gene expression analysis on 152 human 
samples and compared with normal neighbouring prostate 
tissues to confirm an alteration of gene expression in 
prostate cancer [10]. Chandran et al. analyzed Affymetrix 
oligonucleotide arrays and their results shows that 415 
genes are up-regulated and 364 genes are down-regulated in 
metastatic prostate tumor [11]. 
Some studies report genes that are not included in published 
pathways as cancer-related genes [12-15]. Thus, researchers 
must locate the crux of pathways and their environment and 
apply gene-wide and protein-wide data to find the 
relationship between those genes and published pathways. 
Some activated pathways cut across the published pathways 
from those cancer-related genes that are not emphasized on 
the published pathways. Therefore, a significant change in 
gene level is needed, and the character of cancer can match 
this requirement. Cancer is strongly associated with defects 
in signal transduction pathways. In cancer tissue, the 
function of pathways is uncontrolled and inappropriate. 
When a gene shows a significant change, an activated 
pathway across this gene allows researchers to infer a 
pathway from here, even if they do not know which 
pathway is activated. 
 
 
2. Materials and Methods 
 
This study involves the collection of three kinds of data. 
Protein-protein interaction data is used for network 
construction. Protein location information prevents an 
impossible interaction. Finally, gene expression profile 
reveals the strength of change. All of the proteins/genes 
used in this study were normalized to a specific symbol 
using data downloaded from the Uniprot [16]. 
To construct a PPI network, protein-protein interaction 
information was collected from the Interologous Interaction 
Database (I2D) [17]. The data is combined from 6 
commonly used PPI databases (BIND, BioGrid, HPRD, 
INNATEDB, IntAct, and MINT). We filtered out specific 
PPIs (e.g., experimental or predicted data). The remaining 
PPIs are non-redundant PPIs and the number exceeds 
70,000. 
To avoid interactions that do not naturally exist, this study 
follows the basic protein targeting pathways to remove 
them. It means that all reactions in the results can really 
happen in cell. The real reactions happen between 
cytoplasm and nucleus, cytoplasm and mitochondria, 
cytoplasm and endoplasmic reticulum, cytoplasm and 
chloroplast, cytoplasm and peroxisome, endoplasmic 
reticulum and golgi apparatus, lysosome and golgi 
apparatus, secretory vesicles and golgi apparatus, plasma 
membrane and golgi apparatus, plasma membrane and 
secretory vesicles, plasma membrane and endosome, and 
lysosome and endosome. 
A change on gene expression is applied to locate pathways 
on the PPI network. More severe changes are needed, and 
we collected gene expression data of cancer. Many tumors' 
gene data samples are available in the GEO data set. This 

study uses prostate cancer (GDS2545), which is a 
metastatic prostate tumors and primary prostate tumors 
(Affymetrix Human Genome U95 Version 2 Array) that 
includes 12,625 identifiers/genes. That study is that normal 
tissue adjacent to the tumor and normal donor tissue also 
examined. Specifically, metastasis reflects the most adverse 
clinical outcome and provides insight into the molecular 
mechanisms underlying the metastatic process. This dataset 
is from 18 donor and 64 primary prostate tumor samples. 
The stages are divided into four stages. The four stages are 
“Stage 1: normal prostate tissue”, “Stage 2: normal prostate 
adjacent to tumor”, “Stage 3: primary prostate tumor” and 
“Stage 4: metastatic prostate tumor”. According the header 
description of GDS2545, these samples are divided into 
three groups: “normal prostate adjacent to tumor versus 
normal prostate tissue”, “primary prostate tumor versus 
normal prostate adjacent to tumor” and “metastatic prostate 
tumor versus primary prostate tumor”. Next, we used a self-
developed tool to analyze these three groups based on a 
function of R package. Stage 1 includes 18 GSMs. Stage 2 
includes 63 GSMs. Stage 3 includes 65 GSMs. Stage 4 
includes 25 GSMs. Table 1 shows the list of all stages. 
 

Table 1 
Classified GSMs from GDS2545 

GDS2545: Metastatic prostate cancer (HG-U95A) 
Stage List of GSMs 

Stage
1

GSM152804,GSM152805,GSM152806,GSM152807,GSM152808,
GSM152809,GSM152810,GSM152811,GSM152812,GSM152813,
GSM152814,GSM152815,GSM152816,GSM152817,GSM152818,
GSM152819,GSM152820,GSM152821 

Stage
2

GSM153115,GSM153116,GSM153117,GSM153118,GSM153119,
GSM153120,GSM153121,GSM153122,GSM153123,GSM153124,
GSM153125,GSM153126,GSM153127,GSM153128,GSM153129,
GSM153130,GSM153131,GSM153132,GSM153133,GSM153134,
GSM153135,GSM153136,GSM153137,GSM153138,GSM153139,
GSM153140,GSM153141,GSM153142,GSM153143,GSM153144,
GSM153145,GSM153146,GSM153147,GSM153148,GSM153149,
GSM153150,GSM153151,GSM153152,GSM153153,GSM153154,
GSM153155,GSM153156,GSM153157,GSM153158,GSM153159,
GSM153160,GSM153161,GSM153162,GSM153163,GSM153164,
GSM153165,GSM153166,GSM153167,GSM153168,GSM153169,
GSM153170,GSM153171,GSM153172,GSM153173,GSM153174,
GSM153175,GSM153176,GSM153177 

Stage
3

GSM152931,GSM152932,GSM152933,GSM152934,GSM152935,
GSM152936,GSM152937,GSM152938,GSM152939,GSM152940,
GSM152941,GSM152942,GSM152943,GSM152944,GSM152945,
GSM152946,GSM152947,GSM152948,GSM152949,GSM152950,
GSM152951,GSM152952,GSM152953,GSM152954,GSM152955,
GSM152956,GSM152957,GSM152958,GSM152959,GSM152960,
GSM152961,GSM152962,GSM152963,GSM152964,GSM152965,
GSM152966,GSM152967,GSM152968,GSM152969,GSM152970,
GSM152971,GSM152972,GSM152973,GSM152974,GSM152975,
GSM152976,GSM152977,GSM152978,GSM152979,GSM152980,
GSM152981,GSM152982,GSM152983,GSM152984,GSM152985,
GSM152986,GSM152987,GSM152988,GSM152989,GSM152990,
GSM152991,GSM187524,GSM187525,GSM187526,GSM187527 

Stage
4

GSM152856,GSM152857,GSM152858,GSM152859,GSM152860,
GSM152861,GSM152862,GSM152863,GSM152864,GSM152865,
GSM152866,GSM152867,GSM152868,GSM152869,GSM152870,
GSM152871,GSM152872,GSM152873,GSM152874,GSM152875,
GSM152876,GSM152877,GSM152878,GSM152879,GSM152880 

 
The Wilcoxon rank-sum test (also called the Mann–
Whitney U test) is applied to identify the expression change 
of a gene between different statuses. When the p-value is 
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less than 0.05, the expression change of a gene between two 
statuses, original status and developed status, is considered 
to be significant. A gene with a significant change on gene 
expression is named as a locating gene/point. This is 
because one or more activated pathway crosses that point in 
the developed status. Therefore, we should find fixed-
searching-depth fragments of pathway from a locating point. 
We suggest that an activated pathway could exhibit more 
severe change than inactivated pathways at the same 
situation. Thus, the strength of change should be calculated. 
This study uses a parameter GCS (Gene Expression Change 
Score) to measure the strength of gene expression change. 
The GCS equation is defined as follows (1): 

GCS i= (1− pi) 100/n ,if ni i= 0,GCS i= 0 　　　　　　
　　       　　　　　　　　 

here ni is the total interaction number of gene i on the PPI 
network (non-loops). To decide the strength of edge 
between gene i and gene k, the score equation is defined as 
ECS (Edge Change Score) (2): 

ECS ik= (GCSi+ GCSk )/2 　　
　

An ECS is the average of two GCSs in an interaction. When 
we determine how to measure the strength of edge's change, 
the strength of pathway fragment's change in a fixed 
searching depth could be calculated as PCS (Pathway 
Change Score) (3): 

PCS=
∑ ECS

Searching Depth 　　　　　　　　　                      
　　　　　　　　　　　　　　　　　　　 

A PCS is the average of all ECSs in a merged-fragment 
subnetwork. A searching-depth x of fragment includes x+1 
nodes/genes. To rank the PCSs, the highest scores are 
considered as potential pathway fragments. In the study, we 
adopt searching-depth 2 because a fragment including at 
most 5 nodes/genes (length 5) can be created from these 
results. Results show that every locating point leads to 
thousands of fragments that include some loops and two-
way fragments. All top 5 fragments (non-loops and non-
redundancies) were merged into a subnetwork. Merging 
these subnetworks produces the final results, which is a 
pathway map. The proposed process involves several 
scoring and searching steps, as illustrated in Figure 1. 
 
 
3. Results 
 
This study uses prostate cancer data (KEGG pathway map 
hsa05215 and GEO GDS2545) to develop and test the 
proposed method. According to the available data, three 
groups (A: Stage 1 versus Stage 2, B: Stage 2 versus Stage 
3 and C: Stage 3 versus Stage 4) were produced from 
GDS2545. 

 

 
Figure 1. Schematic overview of this study. 

For the Wilcoxon rank-sum test, if the p-value of the 
change of gene expression between original status and 
developed status is less than 0.05, it is considered as 
significance. The group A contains 1,485 genes with a 
significant change in gene expression. The group B contains 
2,619 genes with a significant change in gene expression. 
The group C contains 4,380 genes with a significant change 
in gene expression. For group A, 17 significant protein 
families can be mapped to the KEGG prostate cancer map. 
For group B, 24 significant protein families can be mapped 
to the KEGG prostate cancer map. For group C, 48 
significant protein families can be mapped to the KEGG 
prostate cancer map. Table 2 shows the locating points on 
the KEGG prostate cancer map at these three groups. The 
next step calculates the gene expression change score GCS 
of each point. 
To understand which pathway is active, the edge expression 
change score ECS is defined to score the intensity of change 
in the link/edge between normal and other situations. The 
number of pathway fragments that need to be scored 
depends on the degree of interaction. From the distributions 
of fragment score, rare fragments that pass the locating 
points have strong reaction. 
For merging top-x score fragments, three pathway maps of 
these groups for prostate cancer are shown in Figure 2. 
(Pathway map A), Figure 3. (Pathway map B) and Figure 4. 
(Pathway map C). The top score fragments are calculated 
based on the pathway change score PCS. Apart from 
finding the potential pathways of complicity in cancer, this 
approach also shows the progress of cancer in pathway 
level. The resulting pathway map shows some interesting 
results in the hubs of nodes that belong to the KEGG 
prostate cancer map. Specifically, 7 genes appear as hubs in 
the pathway map A (AURKA, EPRS, HSPA9, MAP3K7, 
MLST8, NR2C2, and RAF1). 4 hubs appear in the 
environment pathway B (CTNNB1, EGFR, FGF2, and 
PLCG1). Furthermore, 17 hubs appear in the environment 
pathway C (AKT1, CALCOCO1, CREB3L4, CTNNB1, 
CTSD, IDE, MLST8, NR2C2, PIK3CG, PPP4C, PRKCD, 
RAF1, RB1, SFN, SUMO3, TANK and ZBTB17). 
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4. Conclusion 
 
We proposed a heuristic method to measure the change of 
pathway expression. We pointed out that only PPIs or gene 
expressions are not enough for pathway inference. This 
method could solve the problem to integration of protein-
protein interaction and gene expression. A series of 
computational test was conducted to show that our 
algorithm could draw pathways maps with stage status and 
showed the progress of cancer. 
As for group A, pathway map in Figure 2 shows the 
progress from normal to tumor. AURKA, EPRS, HSPA9, 
MAP3K7, MLST8, NR2C2, and RAF1 appear on the first 
pathway map. Among these, AURKA, EPRS, MAPK3K7 
and RAF1 could be found on the related page of GeneCards. 
In the pathway map for group B (see Figure 3), CTNNB1 
and EGFR could be found on the related page of GeneCards. 
In the pathway map for group C (see Figure 4), AKT1, 
CREB3L4, CTNNB1, PIK3CG, RAF1, RB1 and SFN) 
could be found on the related page of GeneCards. It proves 
these genes are associated with prostate cancer to a certain 
degree. As for other genes that are not show the association 
to prostate cancer on the GeneCards, they have to be proved 
by further works. 
 
 
5. Discussion 
 
Via three result pathway maps, different genes play 
important roles at different disease stages respectively. The 
number of genes with “significant gene expression change” 
grows. The direction is from membrane to nuclear. The 
proposed method integrates gene expression data and 
protein-protein interactions for pathway research. This 
approach uses quantitative identification to find the 
fragments of activated pathways and construct the 
neighbourhood around known pathways. This study reveals 
the role and importance of the neighbourhood around 
cancer pathways. In the global pathway maps the results 
show the potential relationships of cancer-related genes that 
do not appear on the known pathway map. These 
relationships provide a possible approach to find potential 
and unknown cancer-related genes.  
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Table 2 
The test result of locating points at three groups of GDS2545 

Family Member or Alias Name 
Group A Group B Group C 

Significant p-value Significant p-value Significant p-value 
GSTP1 DFN7, FAEES3, GST3, GSTP, GSTP1 , PI   GSTP1 0.000003 GSTP1 0.000000003076 
NKX3-1 BAPX2; NKX3; NKX3.1; NKX3A       
PTEN 10q23del; BZS; CWS1; DEC; GLM2; 

MHAM; MMAC1; PTEN1; TEP1 
    TEP1 0.000001723 

GF 
EGF, PDGFA, PDGFB, INS, PDGFC_D, 
IGF1, TGFA,  

PDGFA 0.00493 IGF1 0.006689 
INS 0.00003993 
IGF1 0.00002488 

GFR 

EGFR, ERBB1, FGFR1, PDGFRA, 
ERBB2, HER2, INSRR, IGF1R, PDGFRB, 
FGFR2 FGFR2 

0.002864 
FGFR1 0.001295 

EGFR 0.006172 
ERBB2 0.000000005907 

FGFR2 0.0000217 
IGF1R 0.0009311 
FGFR2 0.0000009558 

PI3K 
PIK3CA, PIK3CB, PIK3CD, PIK3CG, 
PIK3R1, PIK3R2, PIK3R3, PIK3R5, 
PIK3C2A, PIK3C2B, PIK3C2G 

  
PIK3CG 0.007083 

PIK3CA 0.00005876 
PIK3R1 0.000006806 

PIK3R2 0.0474 
PIK3C2A 0.002192 
PIK3C2B 0.0436 

PDK1 PDPK1; PDK1; PDPK2; PRO0461 PDPK1 0.02111   PDK1 0.003776 
PKB/Akt AKT1, AKT2, AKT3  

  AKT2 
0.0142 AKT2 0.0335 

AKT3 0.001146 
SRD5A2 SRD5A2, MGC138457       

Grb2 
GRB2, ASH; EGFRBP-GRB2; Grb3-3; 
MST084; MSTP084; NCKAP2 

GRB2 
0.009916 

GRB2 
0.01819 

GRB2 0.000000000001861 

SOS SOS1, SOS2  SOS1 0.02208 SOS2 0.02002   

Ras 
HRAS; C-BAS/HAS; C-H-RAS; C-HA-
RAS1; CTLO; H-RASIDX; HAMSV; 
HRAS1; KRAS; NRAS; RASH1 

HRAS 
0.01225 

KRAS 
0.009854 HRAS 0.00003995 

KRAS 0.02608 

Raf 
BRAF, RAF1, ARAF, ARAF1, CRAF, 
PKS2; RAFA1 

    ARAF 
0.0000000009557 

MEK1 
MAP2K1, MEK1, MAPKK1 , MKK1; 
PRKMK1,  

MAP2K1 
0.02523 

    

MEK2 
MAP2K2, MEK2, MAPKK2, MKK2; 
PRKMK2 

MAP2K2 
0.001385 

MAP2K2 
0.005339 

MAP2K2 0.00005548 

ERK 
MAPK1, MAPK2, MAPK3, ERK-1; 
ERK1; ERT2, PRKM1; PRKM2, PRKM3

    MAPK1 
0.01324 

AR AR, AIS; DHTR; HUMARA; HYSP1; KD; 
NR3C4; SBMA; SMAX1; TFM 

  AR 
0.0032 

AR 
0.000000000004022 

HSP 
htpG, HSP90A, HSP90B, HSP90B1, 
TRA1, ECGP; GP96; GRP94 

    HSP90B1 
0.00000000003789 

Casp9 
CASP9, APAF-3; APAF3; CASPASE-9c; 
ICE-LAP6; MCH6; PPP1R56 

CASP9 
0.04144 

    

BAD BAD, BBC2, BBC6, BCL2L8     BAD 0.03744 
FKHR FOXO1, FKH1; FKHR; FOXO1A   FOXO1 0.006002 FOXO1 0.00007959 

p21 
CDKN1A, P21, CIP1, CAP20; CDKN1; 
MDA-6; SDI1; WAF1; p21CIP1 

  CDKN1A 
0.03011 

  

p27 
CDKN1B, P27, KIP1, CDKN4, MEN1B; 
MEN4; P27KIP1 

      

MDM2 MDM2, ACTFS; HDMX; hdm2   MDM2 0.0007657   
GSK3 GSK3A, GSK3B 

  
GSK3A 0.000428 

GSK3B 
0.000000000541 

GSK3B 0.006835 
IKKA IKBKA, IKKA, CHUK CHUK 0.00003134   CHUK 0.003317 
IKKB IKBKB, IKKB IKBKB 0.03559   IKBKB 0.03504 
IKKG IKBKG, IKKG, NEMO   IKBKG 0.00163   
mTOR MTOR, FRAP, FRAP1; FRAP2; RAFT1; 

RAPT1 
    MTOR 

0.000002106 

CREB1 CREB1     CREB1 0.00007958 
CREB2 ATF4, CREB2 ATF4 0.00002567     
CREB3 CREB3, LUMAN; LZIP     CREB3 0.000002061 
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NFKB1 0.00001596 
RELA 0.03504 
REL 0.02375 

CDK2 CDK2, p33     CDK2 0.00003416 
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0.01107 E2F2 0.03911 
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Figure 2. The pathway map A for group A. This map shows the situation from normal to tumor in prostate cancer. The pink 
ellipses show a node in KEGG prostate cancer pathway map with significant change in gene expression at group A. The 
orange ellipses show a node in KEGG prostate cancer pathway map without significant change in gene expression at group A, 
but a hub for pink ellipses in this map. 
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Figure 3. The pathway map B for group B. This map shows the situation from early prostate tumor to primary prostate tumor. 
The pink ellipses show a node in KEGG prostate cancer pathway map with significant change in gene expression at group B. 
The orange ellipses show a node in KEGG prostate cancer pathway map without significant change in gene expression at 
group B, but a hub for pink ellipses in this map. 
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Figure 4. The pathway map C for group C. This map shows the situation from primary prostate tumor to metastatic prostate 
tumor. The pink ellipses show a node in KEGG prostate cancer pathway map with significant change in gene expression at 
group C. The orange ellipses show a node in KEGG prostate cancer pathway map without significant change in gene 
expression at group C, but a hub for pink ellipses in this map. 
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