Ahmed Al-Ani,Mostefa Mesbah

View Full Paper


  1. [1] D.L. Fisher, M. Rizzo, J.K. Caird, and J.D. Lee, Editors, Driving Simulation for Engineering, Medicine, and Psychology, CRC Press, Boca Raton, FL, 2011.
  2. [2] A. Varri, K. Hirvonen, J. Hasan, P. Loula, and V. Haikkinen. A computerized analysis system for vigilance studies. Computer Methods and Programs in Biomedicine, 39, 1992, 113124.
  3. [3] M. Nakamura, T. Sugi, A. Ikeda, R. Kakigi, and H. Shibasaki. Clinical application of automatic integrative interpretation of awake background. EEG: quantitative interpretation, report making, and detection of artifacts and reduced vigilance level. Electroencephalography and clinical Neurophysiology, 98, 1996, 103-112.
  4. [4] M.K. Kiymik, M. Akin, and A. Subasi. Automatic recognition of alertness level by using wavelet transform and artificial neural network. Journal of Neuroscience Methods, 139, 2004, 231-240.
  5. [5] M.B. Kurt, N. Sezgin, M. Akin, G. Kirbas, and M. Bayram.The ANN-based computing of drowsy level. Expert Systems with Applications, 36, 2009, 2534-2542.
  6. [6] M.V.M. Yeo, X. Li, K. Shen, and E.P.V. Wilder-Smith. Can SVM be used for automatic EEG detection of drowsiness during car driving? Safety Science, 47, 2009, 115-124.
  7. [7] E. Vural, M. etin, A. Eril, G. Littlewort, M. Bartlett and J. Movellan, Drowsy driver detection through facial movement analysis. Proceedings of the 2007 IEEE International Workshop on Human-computer Interaction, Rio de Janeiro, Brazil, 2007.
  8. [8] K.-A. Hwang and C.-H.Yang, Attentiveness assessment in learning based on fuzzy logic analysis.Expert Systems with Applications, 36, 2009, 6261-6265.
  9. [9] A. Al-Ani, B. Van Dun, H. Dillon, A, Rabie, Analysis of Alertness Status of Subjects Undergoing The Cortical Auditory Evoked Potential Hearing Test, International Conference on Neural Information Processing, ICONIP 2012, 2012, 9299.
  10. [10] A. Al-Ani, M. Mesbah, B. Van Dun, and H. Dillon, Fuzzy Logic-Based Automatic Alertness State Classification Using Multi-channel EEG Data, International Conference on Neural Information Processing, ICONIP 2013 2013, 176-183.
  11. [11] A. Al-Ani, A. Alsukker and R.N. Khushaba, Feature subset selection using differential evolution and a wheel based search strategy, Swarm and Evolutionary Computation, 9, 2013, 1526.
  12. [12] E. Avci, D. Avci, The speaker identification by using genetic wavelet adaptive network based fuzzy inference system. Expert Systems with Applications, 36(6), 2009, 9928-9940.
  13. [13] H. Yan, Z. Zou, and H. Wang, Adaptive neuro fuzzy inference system for classification of water quality status, Journal of Environmental Sciences, 22(12), 2010, 1891-1896.
  14. [14] H. Iyatomi and M. Hagiwara, Adaptive fuzzy inference neural network, Pattern Recognition, 37, 2004, 2049-2057.
  15. [15] A. Gonzlez and R. Prez, SLAVE: a genetic learning system based on an iterative approach, IEEE Transactions on Fuzzy Systems, 7, 1999, 176-191. 152
  16. [16] H. Ishibuchi, T. Yamamoto and T. Nakashima, IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 35(2), 2005, 359-365.
  17. [17] K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization, Springer, 2005.
  18. [18] I. Guyon, S. Gunn, M. Nikravesh and L.A. Zadeh Feature Extraction: Foundations and Applications, Springer-Verlag New York, 2006.
  19. [19] F.H.L. Da Silva and A. Van Rotterdam, Biophysical Aspects of EEG and Magnetoencephalogram Generation, in D.L. Schomer and F.H.L. Da Silva, Eds., Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, 6th Edition, Lippincott Williams & Wilkins 2011

Important Links:

Go Back