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ABSTRACT
This paper presents a method for automatically selecting
the optimal EEG rhythm/channel combination capable of
classifying the different human alertness states. We con-
sidered four alertness states, namely ’engaged’, ’calm’,
’drowsy’, and ’asleep’. Energies associated with the con-
ventional EEG rhythms, δ, θ, α, β and γ, extracted from
overlapping segments of the different EEG channels were
used as features. The proposed method is a two-stage pro-
cess. In the first stage, the optimal brain regions, repre-
sented by a set of EEG channels, are identified. In the sec-
ond stage, a fuzzy rule-based alertness classification system
(FRBACS) is developed to select the optimal EEG rhythms
extracted from the previously selected EEG channels. The
IF-THEN rules used in FRBACS are constructed using a
novel bi-level differential evolution (DE) based search al-
gorithm. Unlike most of the existing classification meth-
ods, the proposed classification approach reveals easy to
interpret rules that describe each of the alertness states.

KEY WORDS
Alertness classification; drowsiness; EEG; Fuzzy Rule-
Based Classification System; Variable selection; Differen-
tial Evolution.

1 Introduction

Alertness plays a major role in the safety, productivity
and health of people [1]. The development of automatic
alertness state classification has recently attracted an in-
creased attention in a number of scientific disciplines. Most
of the currently existing approaches for automatic alert-
ness state classification are based on either physiologi-
cal signals [2, 4, 5, 6] or image sequences (video) [7, 8].
The first category of methods uses physiological signals
such as the electroencephalogram (EEG), electromyogram
(EMG), electrooculogram (EOG), and electrocardiogram
(ECG),separately or combined, for alertness identification.
Among these signals, EEG and more specifically the five
EEG rhythms; namely δ (up to 4 Hz), θ (4 - 8 Hz), α (8 -
13 Hz), β (13 - 30 Hz), and γ (30 - 100 Hz), were found to
be reliable indicators of vigilance.

To automatically identify alertness states using EEG,
two approaches have been adopted in the literature. In
the first approach, known as pattern identification,the aims

was to identify EEG patterns that characterize the differ-
ent alertness states. Varri et al [2] linked the reduction in
vigilance with a decrease in the amplitude and frequency
of the posterior alpha rhythm and an increase in the slow
wave EEG components. In [3], Nakamura et al. con-
cluded that reduction in vigilance was also accompanied
by a maximum of a activity at the occipital or parieto-
occipital regions. The second, and most frequently adopted
approach,uses discrete features as a basis for state alert-
ness segregation. Used features were extracted from differ-
ent domains, namely time-domain, frequency-domain and
time-frequency domain [4, 5, 6]. These features were then
fed to a classifier, such as artificial neural networks (ANN)
[4, 5] or support vector machines (SVM) [6] to be as-
signed to either two states (alert/drowsy) [6] or three states
(alert/drowsy/asleep) [4] of alertness. A number of video-
based methods have also been proposed in the literature,
such as [7, 8]. Video-based methods: Most of the proposed
video-based methods follow a three-stage process: 1) Face
detection, 2) eyes localizations, and 3) either eyelid move-
ment detection (to compute the percentage of eye closure)
or gaze tracking (using either ordinary or infrared cameras).
These methods, however, face a number of challenges such
as fast movements of eyes, changes in pose, lighting varia-
tions, and heavy computational load. Due to the reliability
of the EEG in identifying alertness states, we decided to
use EEG as a basis for developing a new method for auto-
matically classifying alertness states.

In [9, 10], the authors concluded that all five rhythms
along with multi-channel EEG are needed to achieve an ef-
ficient discrimination between the different alertness states.
They also showed that a basic fuzzy rule-based classifica-
tion system can achieve a good performance. The authors,
however, noticed that the system suffered from its inabil-
ity to prevent conflict among its fuzzy rules. This paper
presents an attempt to overcome this problem. Here we
concentrate on the problem of selecting the best spatio-
frequency features extracted from multi-channel EEG ca-
pable of accurately classifying alertness states. The pro-
posed method is composed of two stages: 1) identify the
”optimal” cortical regions and 2) construct a set of IF-
THEN rules involving combination of EEG rhythm and
channel spatial locations. This new approach contrasts with
the widely used black box approach. The IF-THEN rules
selection process uses an enhanced version of a differential
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Figure 1. Alertness membership functions

evolution (DE) based search technique previously proposed
by the first author [11]. The enhancements concentrated
on the development of a new method for preventing con-
flicts among the selected fuzzy rules, along with a number
of other implemented optimizations deemed necessary to
enhance the performance of the overall optimal selection
method. The main aim here was to realize a good trade-off
between efficiency of the features and their ease of inter-
pretation.

The paper is organized as follows. The fuzzy rule-
based classification system (FRBCS) is presented in sec-
tion 2. Section 3 details the enhanced DE-based method
for constructing the fuzzy rules used by the FRBCS. The
experimental results and discussions are given in section 4.

2 Fuzzy Rule based Classification System for
Alertness detection

Due to its transparent model built on linguistic variables,
the fuzzy rule-based classification system (FRBCS) is
widely used in classification problems [12, 13]. This prop-
erty makes it more attractive for problems that require
transparent mapping from the input variables to the out-
put classes, such as in the case of medical diagnosis. This
property is mostly lacking in many of the widely used clas-
sification algorithms. For the particular problem of alert-
ness state detection, there is an extra advantage for using
FRBCS. By using fuzzy logic, the effect of inconsistency
in labeling data by the participating subjects or the human
experts can be accounted for. This is achieved by allow-
ing a certain degree of overlap between adjacent states, as
shown in Fig. 1.

FRBCS maps a vector input to a vector output using
fuzzy memberships and a predefined set of IF-THEN rules.
As shown in Fig. 2 the FRBCS design involves 1) defining
the membership functions, 2) estimating their parameters,
3) constructing of the fuzzy rules, and 4) processing the
validation data and predicting the output classes. This pa-
per focuses on the construction of rules, as our aim is to
identify a limited number of rules with a small number of
actions or antecedents to reduce the complexity of the sys-
tem and obtain easily interpretable rules.

Some of the widely used methods for constructing
the rules are based on artificial neural networks [14] and
genetic algorithms [15, 16]. Although these methods

Specify No. of input Features. Assign

one output to the FRBCS

Define membership functions (MFs) for

each feature and define the output MFs

based on the number of classes

Construct a set of IF THEN rules (at

least one rule for each class)

Apply input data to the FRBCS and

obtain outputs by evaluating the rules

Determine the output classes based on

the output MFs, and calculate the

class−wise classification accuracy

(will be used as the fittness measure)

Figure 2. Design of the FRBCS

achieved good results in certain applications, we decided to
build a new FRBCS for the alertness state classification (re-
ferred to as FRBACS) for the following reasons. Firstly, we
want to control the construction of the rules by construct-
ing a number of rules equal to NC (number of alertness
classes). Secondly, we want to control the rule complexity
by constructing simple rules that are easy to interpret. This
can be done by favoring rules with fewer antecedent vari-
ables through adding a penalty term to the fitness function
that is proportional to the antecedent complexity. Thirdly,
differential evolution was shown to possess efficient explo-
ration capability in the search space and particularly when
applied to feature/variable selection [11, 17].

As shown in Fig. 3, each feature support is parti-
tioned into three regions, namely low, medium and high.
The Features are first normalized between 0 and 1 before
being fuzzified using a pi-shaped membership function. To
construct the membership function, four parameters are re-
quired. These represent the transition points from 0 to 1 and
then from 1 to 0. The fuzzification process is performed ac-
cording to the following steps:

• Construct a histogram for each of the five features and
identify the 6%, 47%, 53%, and 94% quartiles and
assign those values to a vector, pp that has four com-
ponents, [pp(1), pp(2), pp(3), pp(4)]

• the components of the ”low” membership function
are: [−pp(2),−pp(1), pp(1), pp(2)]

• the components of the ”medium” membership func-
tion are: [pp(1), pp(2), pp(3), pp(4)]
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Figure 3. Membership functions of two different features

• the components of the ”high” membership function
are: [pp(3), pp(4), 2− pp(4), 2− pp(3)]

Although, based on this procedure, the shape of the
membership functions associated with different features
may not be similar (see Fig. 3), each of the three mem-
bership regions (low, medium and high) will have the same
percentage of samples for each of the features. This pre-
vents the three regions, namely low, medium, and high,
from being differently represented for the different feature
samples.

Using these membership functions, the fuzzy IF-
THEN rules take the following format:

Rule n : If Fn1 is MFn1 and . . . and Fnk is MFnk
then Class is Cn
where MFni is the membership function associated with
the ith feature Fni in rule n, and Cn is one of the four
alertness states or classes. In this study, we decided not to
assign weights to the rules as we wanted to automatically
find the best rules for each class. The next section describes
the rule construction process.

3 Construction of Fuzzy Rules using Differ-
ential Evolution

3.1 The DE based feature selection algorithm

One of the important components of feature (or variable)
selection process is a search strategy to generate candi-
date feature subsets [18]. Searching for the optimal sub-
set, which can achieve the best performance according to
the defined evaluation measure, is a quite challenging task.
Among the different existing techniques, stochastic search
has attracted a lot of attention. It was found that including
some randomness in the search process helps these meth-
ods in avoiding local minima [18]. Some of the widely
used stochastic methods in feature selection are: simulated
annealing genetic algorithm (GA), ant colony optimization
(ACO), particle swarm optimization (PSO) and differential

Med

LowNone

High

Figure 4. Wheel representation with the four different fea-
ture memberships: None, Low, Med, and High

evolution (DE) [11]. We decided to adopt the DEFS (Dif-
ferential Evolution based Feature Selection) method pre-
sented in [11]1 due to its superior performance.

DE is a simple population-based optimizer that en-
codes all the parameters as floating-point numbers and ma-
nipulate them with arithmetic operators. Considering that
we haveNP members in the population, the first step in the
DE optimization technique is to generate a D-dimensional
real-valued parameter vector for each member, where D is
the number of parameters that need to be optimized. The
objective of the feature selection algorithms is to search
for the best M features from the original NF ones, where
M < NF . To achieve this in DEFS, the NF features
are randomly distributed among M wheels, where one fea-
ture is selected from each wheel at any given time to form
a candidate subset. The obtained subset of each of each
population member is evaluated and sorted based on its
performance. The differential combination and uniform
crossover operators of the DE algorithm are used to pro-
duce members of the next generation. After a certain num-
ber of iterations, the best K subsets are saved and the
features that form them are fixed in their corresponding
wheels, while the rest of features are re-shuffled among the
wheels and the algorithm starts another round of optimiza-
tion. This process is repeated until a pre-defined stopping
criterion is met. More details can be found in [11].

3.2 The FRBACS algorithm

The DEFS algorithm has to be modified for the purpose of
rule construction. As we are dealing with N -channel sig-
nals (N = 10 in the present case) that are each represented
with F features (F = 5), then for this particular prob-
lem D = 50. Unlike DEFS, here each feature has its own
wheel, as shown in Fig. 4, where, in the optimization phase,
each feature can take any value in the range [0.5, 4.5), thus
when rounded, it will take the following values: 1 (low), 2
(medium), 3 (high), or 4 (none).

The fuzzy rule-based alertness classification system
(FRBACS), in its first run, constructs four rules (one for
each alertness state). Unlike in DEFS, wheels do not need

1code is available online at: http://services.eng.uts.edu.au/ãhmed/
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to be re-shuffled here. If, for example, the ith feature of the
nth rule, Fni, represents the α rhythm of channel p and the
algorithm selects ’medium’ to represent it, the antecedent
part of that rule will contain the following:

if . . . and αp is med and . . .
In order to reduce the rule complexity (represented by the
number of antecedents), the algorithm favors the selection
of the last variable (’none’) by assigning it a higher proba-
bility than the other three variables.

The output values are obtained for each member of
the population by evaluating the fuzzy system (defuzzifi-
cation). The output values are then used to calculate the
class-wise classification accuracy of the training set, which
in turn is used as the ”fitness function”, as in wrapper-based
feature selection methods. There is, however, an impor-
tant issue that needs to be considered when dealing with
multi-channel EEG. Due to the nature of the EEG genera-
tion mechanism [19], one would expect that the fuzzy rules
should be free from conflicts for the case of closely located
EEG channels. In other words, any rule consisting of the
same feature from neighboring channels should not contain
conflicting antecedents. As the original FRBACS is not
guaranteed to be free from such conflicts, either within the
same rule or between different rules, we proposed to mod-
ify the algorithm to overcome this limitation. The modified
algorithm is presented in the next section.

3.3 The modified FRBACS algorithm

The modified FRBACS is a bi-level process with a penalty
term that is added to the fitness measure. The five EEG
rhythms (δ, θ, α, β and γ) extracted from each brain re-
gion constitute the first level. The second level contains the
EEG rhythms of the individual channels, as shown in Fig.
5 (here a region is formed from five channels). Each of
the five rhythms in the first level can take only two values,
namely 0 or 1. Selecting 0 for a given rhythm in the first
level implies that this rhythm will be absent from all the
channels of the region. This will help reduce the number of
antecedent variables of the fuzzy rules. However, if value 1
is selected for the given rhythm, the rule will be allowed to
be have this rhythm presented in the individual channels of
the region. This rhythm can take one of four values: ’low’,
’medium’, ’high’, or ’none’. Based on this process, for a
given rhythm, the selection of 1 in the first level does not
guarantee that this rhythm will be present in all five chan-
nels and, therefore, as precedents in the fuzzy rule. This
can happen, for example, when some or all channels are
represented by 0 in the second level. In order to avoid
conflicts within the same rule, a penalty term is added to
the fitness function to prevent neighboring channels having
two extreme values, such as ’low’ and ’high’, for the same
rhythm from appearing in the same antecedent.

Due to the randomness component of the DE algo-
rithm, the constructed rules are not guaranteed to be the
same each time the algorithm is run, which is the main lim-
itation of this implementation of Fuzzy rule-based classi-
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Figure 5. Rhythm/channel representation for a given region
of five channels

fication. One possible way to resolve this issue is through
”re-optimization”. We decided to use the existing L set of
rules, obtained by running the algorithm L times, as the
starting points for L members of the population for the
final or ”re-optimization” run. For the remaining mem-
bers of the population, the rules are randomly initialized.
The main idea behind re-optimizing the rules is to produce
new rules that are obtained by fusing/modifying the already
constructed ones.

4 Experimental Analysis and Discussion

4.1 Description of data

Ten adult subjects, with an age range of 24 to 53 years, par-
ticipated in the experiment. The EEG data was recorded
using a 64 channel Neuroscansystem (Compumedics, Ab-
botsford, Australia) as shown in Fig. 6, with the reference
electrode chosen close to Cz (vertex).

Subjects were asked to press one of three buttons ev-
ery 30 seconds to indicate their perceived level of alertness,
i.e, ’engaged’, ’calm but not drowsy’, and ’drowsy’. Each
recording session lasted one hour. The one-hour record-
ing was divided into 6 divisions of 10 minutes each. If the
subject did not provide an input for more than 3 minutes,
he/she was considered to have fallen asleep.

The recorded signal was divided into windows of 5
seconds with overlap of 3 seconds. For each window, five
features corresponding to the energy in the five EEG fre-
quency bands (δ , θ, α, β and γ) were extracted. Each 10
consecutive windows were grouped to form an epoch. For
each subject, 75% of the epochs were used for training and
the remaining 25% for testing. This procedure was chosen
to reduce unrealistically biasing the classifier toward high
testing accuracy. Training windows from all 10 subjects
were used to train both the linear support vector machine
(SVM) classifier, used in channel selection, and our pro-
posed FRBACS in all conducted expreiments.
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Figure 6. EEG channels used for recording data with two
neighborhood examples

4.2 Channel selection

For the sake of channel selection, we started by evaluating
the performance of each of the 64 channels and its neigh-
bors where, as mentioned earlier, each channel is repre-
sented using the energy values of the five conventional EEG
rhythms. The brain regions are defined by an EEG channel
(or electrode) and its circular neighbors. An example of a
region represented by the central channel C2 is {C2, FC2,
CZ, CP2, C4}. Note that channels located at the edges may
have less than four neighbors. The performance of each re-
gion was evaluated by feeding their spatio-frequency fea-
tures (energy of the different rhythm/channel combination)
to an SVM classifier. The SVM classifier was chosen due
its good performance shown in many classification prob-
lems, including EEG. It was also used as benchmark in this
study.

The classification result suggests that the best region
is {P1, CP1, P3, PO3, PZ}, which produced an average
class-wise testing accuracy 60.39%. We have fixed this op-
timal region, added another region, repeated the classifica-
tion, and registered the new performance. The best addi-
tional channels obtained was C2: FC2, CZ, CP2, C4 which
when, combined with the first optimal region, produced an
average class-wise classification accuracy of 69.83

The obtained performance using 10 channels is ac-
ceptable given the fact that the classifier was trained using
data from 10 subjects where, a degree of inconsistency in
the labeling has been noticed across subjects, and to some
extend within subjects. This inconsistency was reflected
in the overlap between classes, such as ’engaged’/’calm’
and ’calm’/’drowsy’ during classification. We tried adding
a third set of channels to the already two selected regions,
and found that the best third set is {PO6, P4, PO4, CB2,
P08} that, when combined with the previously two opti-
mal regions, produced an accuracy 72.69% (an increase of
less than 3%). Because of the increased interpretation com-
plexity of fuzzy rules when using more than 2 sets of chan-
nels and limited improvment in performance, we decided
to only consider the first two optimal regions.

4.3 Optimization of fuzzy rules

In order to reveal relationships between the spatio-
frequency features, represented by the rhythm/channel
combination, and each of the alertness states, the process
of constructing fuzzy rules (described in the previous sec-
tion) was applied to the 10 best channels (2 spatial regions)
identified in the previous section. We started by construct-
ing four fuzzy rules, one for each alertness state. We run the
modified FRBACS algorithm multiple times and recorded
the obtained rules. This was performed since there is a cer-
tain degree of randomness in the search procedure of the
algorithm that causes it to produce different results for dif-
ferent runs. The rules obtained after 15 runs are shown in
Table 1. These rules produced a testing set accuracy that
ranged from 57.23% to 59.24%. In each of the 15 runs,
four rules were constructed (one for each alertness state).
The table shows the EEG rhythms for the two brain regions
we selected. For example, the third row of the table shows
the constructed antecedent part of the rule of the first run,
and the consequent of this rule is the ’asleep’ state. This
particular row indicates that the antecedent of the rule is
interpreted as following: For the five channels {P1, CP1,
P3, PZ, PO3}, the membership of the θ rhythm for three of
them (Channels CP1, P3 and PO3) is high, the membership
of the α rhythm for three of them (Channels CP1 and P3)
is medium, and the membership of the β rhythm for two of
those channels (Channels CP1 and PO3) is medium.

Even though the 15 runs produced rules that are not
fully consistent, one can notice some degree of similar-
ity between them in terms of dominant rhythms and their
memberships for each alertness state. Based on that we can
summarize the table as follows:

Sleep: In the P1 region: θ is high, α is medium and β is
medium

Drow: In the C4 region: β is high. In the P1 region: δ is
medium, α is medium and β is medium

Calm: No dominant antecedent

Eng: In the C4 region: δ is high and α is medium. In the P1
region: θ is medium and α is med/low

As the rules are not fully consistent and no suitable rule
that describes the ’calm’ state could be found, we decided
to re-optimize the rules by utilizing the already constructed
ones from the 15 runs.

4.4 Re-optimization of IF-THEN rules

The re-optimization process is implemented at the second
level only. The first level is assigned a constant value that
is either 0 (the rhythm has no entries in the corresponding
column in Tab 1), or 1. The population size is set to 500,
where the first 15 represent the rules of the 15 runs obtained
earlier (shown in Table 1). The remaining 485 members
of the population were randomly initialized. As before,
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Table 1. Constructed rules of the FRBACS over 15 runs

Asleep
C4 and surrounding channels P1 and surrounding channels

δ θ α β γ δ θ α β γ
hhh mmm mm

mm mm mm
mm m

l m mmm m
mm

hhh mmm
m h mmm

hhh
m hhh mmm mm

l hhh mm
hhh mmm
hhh m m

mm
m m hhh
m hhh

Drowsy
m h mmm mm

m mm mm
hh mmm mm

m mmmm m
h mm

m h mmm
mmmm mm

h m mmm mm
h m mmm
h m mmm
h mmmm
h mm

hh mmm
h m mmm
h m mm

Calm
mmm mm hm mmm

hmh mmm
mh mm

ll lll
mhm m

hhmm mh llml lll
mll l

lm mh mm
hmm mll
mmml hhm h

mmmm hm
mm hh hm

mm lll
mmh hmh

mhmm mmh
Engaged

m m m lmm
m m m mm

mm mm m
m l

m m
h m mm mm

m l
m mlmm m
mm m lmm

h m m m
m mlm

h mm
mm mm

h m m
m ml

a penalty term is used to prevent rules from having con-
flicting antecedents and to favor the construction of simple
rules. The new optimized rules, shown in Table 2, resulted
in an average class-wise testing accuracy of 60.87%. These
results show that the rules are not too different from the
ones concluded from Table 1 for the ’asleep’, ’drowsy’ and

Table 2. Best rule for each class after re-optimization

Asleep
C4 and surrounding channels P1 and surrounding channels
δ θ α β γ δ θ α β γ

hhh mm
Drowsy

h mmm mm
Calm

lm mhh
Engaged

h m m mm

Table 3. Confusion matrix of the FRBACS (T: True, P:
Predicted)

P \ T Asleep Drowsy Calm Engaged
Asleep 0.91 0.10 0.09 0.03
Drowsy 0.02 0.49 0.19 0.12
Calm 0.07 0.37 0.60 0.42
Engaged 0.00 0.04 0.12 0.43

’engaged’ states. In addition, the algorithm identified a rule
for the ’calm’ state that did not have a dominant antecedent
in the previously constructed 15 rules. One can also no-
tice from the obtained rules that all five EEG rhythms are
utilized in identifying the different alertness states.

The confusion matrix obtained using the optimized
modified-FRBACS, shown in Table 3, indicates that the
classifier tends to achieve better discrimination rates when
the true states are farther away from each other. For exam-
ple, when the true state is ’engaged’ (column 5), the mis-
classification rate between this state and the ’asleep’ state
is almost zero. A slightly higher misclassification rate can
be seen in the case of the ’drowsy’ state. The lowest dis-
crimination rate was achieved for the case of the ’calm’
state; which is the closest to the ’engaged’ state. The ta-
ble also indicates that the highest misclassification rates
were achieved between ’engaged’ and ’calm’, and between
’calm’ and ’drowsy’. Since the ’calm’ state appeared to be
confused with the ’engaged’ and ’drowsy’ states, we de-
cided to investigate the effects of eliminating this state on
the performance of the classification. This three-state clas-
sification problem is similar to a number of methods pro-
posed in the literature such as [4].

4.5 Classification of three alertness states

We removed all samples that were labelled ’calm’ and
started the optimization of the remaining three states from
the rules that were obtained in section 4.4. Those three ini-
tial rules (one rule per state) were found to produce an aver-
age class-wise classification accuracy of 73.27%. After op-
timization, the average class-wise classification accuracy of
the testing set jumped to 78.16%, which is approximately
5% more than the initial accuracy and about 17% more than
the four classes accuracy. Despite the fact that the SVM
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Table 4. Best set of three rules without the ’calm’ state

Asleep
C4 and surrounding channels P1 and surrounding channels
δ θ α β γ δ θ α β γ

hm m
Drowsy

h mm mm
Engaged

m m m m

Table 5. Confusion matrix of the FRBACS when consider-
ing three alertness states (T: True, P: Predicted)

P \ T Asleep Drowsy Engaged
Asleep 0.92 0.05 0.01
Drowsy 0.07 0.75 0.31
Engaged 0.01 0.20 0.68

classifier achieved a higher accuracy (83.86%), the pro-
posed FRBACS has a clear advantage over it, as it classified
the data based on the three simple rules shown in Table 4.
When compared with Table 2, one can notice a change in
the rule associated with the ’asleep’ sate, a minimal change
to the ’drowsy’ rule, while the ’engaged’ rule was clearly
affected by the deletion of the ’calm’ state. The confusion
matrix obtained using the new set of three rules, shown in
Table 5, indicate there is less overlap between states when
compared to the confusion matrix of four states.

Table 4 also indicates that the P1 region played a more
important role than the C4 region. This is supported by
the higher accuracy achieved by P1 region using the SVM
classifier (section 4.2). The obtained results are expected to
be further improved with the addition of a new set of rules
and optimizing the membership parameters.

5 Conclusion

We presented in this paper a fuzzy rule-based alertness
classification system (FRBACS) that utilized differential
evolution in constructing the rules. We have shown that
the FRBACS is capable of achieving good results. Due to
inconsistency in labelling among the 10 subjects, that we
collected the data from, we decided to investigate the effect
of removing the ’calm’ state, that seemed to confuse both
the subjects and the classifier due to its closeness to the
the ’engaged’ and ’drowsy’ states. This led to a noticeable
improvement in classification performance. Future efforts
will be geared toward enhancing the performance of the
proposed method, by optimizing the different steps of the
classification process, while maintaining the ease of inter-
pret ability of the different fuzzy rules.
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