Guo-qiang Wu, Bao-jun Lin, and Xiao-lin Chen
[1] A. Iyer and S.N. Singh, Variable structure slewing control andvibration damping of flexible spacecraft, Acta Astronautica,25 (1), 1991, 1–9. [2] A. Iyer and S.N. Singh, Sliding mode of control of flexiblespacecraft under disturbance torque, International Journal ofSystems Science, 21 (9), 1990, 1755–1771. [3] Q.L. Hu, Sliding mode manoeuvring control and active vi-bration damping of three-axis stabilized flexible spacecraftwith actuator dynamics, Nonlinear Dynamics, 52 (3), 2008,227–248. [4] S.N. Singh and A.D. Araujo, Adaptive control and stabilizationof elastic spacecraft, IEEE Transactions on Aerospace andElectronic Systems, 35(1), 1999, 115–122.197 [5] S.N. Singh and R. Zhang, Adaptive output feedback con-trol of spacecraft with flexible appendages by modeling errorcompensation, Acta Astronautica, 54(4), 2004, 229–243. [6] Q.L. Hu and G.F. Ma, Adaptive variable structure controllerfor spacecraft vibration reduction, IEEE Transactions onAerospace and Electronic Systems, 44(3), 2008, 861–876. [7] M.K. Ciliz, Adaptive backstepping control using combineddirect and indirect adaptation, Circuits, Systems and SignalProcessing, 26(6), 2007, 911–939. [8] A.M. Zou, K.D. Kumar, and Z.G. Hou, Quaternion-basedadaptive output feedback attitude control of spacecraft usingChebyshev neural networks, IEEE Transactions on NeuralNetworks, 21(9), 2010, 1457–1471. [9] A.M. Zou and K.D. Kumar, Adaptive fuzzy fault-tolerantattitude control of spacecraft, Control Engineering Practice,19, 2011, 10–21. [10] D.H. Zhou and Y.Z. Ye, Modern fault diagnosis and fault-tolerant control (Beijing: Tsinghua University Press, 2000). [11] S. Jayaram and R.W. Johnson, Robust fault-tolerant con-trol architecture-actuator fault detection and reconfiguration,Control and Intelligent Systems, 38, 2010, 1–7. [12] Y.M. Zhang and J. Jiang, Integrated active fault-tolerantcontrol using IMM approach, IEEE Transactions on Aerospaceand Electronic Systems, 37(4), 2008, 1221–1235. [13] G.G. Yen, Online fault accommodation control for catastrophicsystem failures, Control and Intelligent Systems, 33, 2005,119–133. [14] M.G. Perhinschi, M.R. Napolitano, and G. Campa, Integrationof sensor and actuator failure detection, identification, andaccommodation schemes within fault tolerant control laws,Control and Intelligent Systems, 35, 2007, 309–318. [15] Q. Wu and M. Saif, Robust fault diagnosis for a satellite largeangle attitude system using an iterative neuron PID observer,Proc. American Control Conf., Minneapolis, Minnesota, 2006,5710–5715. [16] X.Q. Chen, Y.H. Geng, and Y.C. Zhang, Robust fault tol-erant H-innity control based on LMI approach and applica-tion in satelliete attitude control system, Control Theory andApplication, 25(1), 2008, 95–99. [17] Y. Jiang, Q.L. Hu, and G.F. Ma, Adaptive backstepping fault-tolerant control for flexible spacecraft with unknown boundeddisturbances and actuator failures, ISA Transactions, 49, 2010,57–69. [18] G.F. Ma, Y. Jiang, and Q.L. Hu, Time delay backstepping basedfault tolerant attitude control of satellite, ACTA AeronauticaET Astronautica Sinica, 31(5), 2010, 1066–1073. [19] W. Gao and J.C. Hung, Variable structure control of nonlinearsystems: A new approach, IEEE Transactions on IndustrialElectronics, 40(1), 1993, 45–55. [20] V.M. Popov, Hyperstability of control systems (New York, NY:Springer, 1973). [21] H.H. Choi, LMI-based sliding surface design for integral slid-ing mode control of mismatched uncertain systems, IEEETransactions on Automatic Control, 52(4), 2007, 736–742. [22] P.A. Ioannou and J. Sun, Stable and robust adaptive control(Englewood Cliffs, New Jersey: Prentice-Hall, 1995).
Important Links:
Go Back