A MOBILE ROBOT TARGET TRACKING VIA BRAIN LIMBIC SYSTEM BASED CONTROL

Changwon Kim and Reza Langari

References

  1. [1] O.H. Mowrer, Learning theory and behavior (New York: Wiley, 1960).
  2. [2] E.T. Rolls, A theory of emotion, and its application to understanding the neural basis of emotion, in Y. Oomura (Ed.), Emotions: neural and chemical control (Tokyo: Japan Scientific Societies Press, 1986), 325–344.
  3. [3] J.E. LeDoux, In search of an emotional system in the brain: leaping from fear to emotion and consciousness, in M.S. Gazzaniga (Ed.), The cognitive neurosciences (Cambridge: MIT Press, (1995), 1049–1061.
  4. [4] E.T. Rolls, A theory of emotion and consciousness, and its application to understanding the neural basis of emotion, in M.S. Gazzaniga (Ed.), The cognitive neurosciences (Cambridge: MIT Press, 1995), 1091–1106.
  5. [5] C. Balkenius & J. Moren, Emotional learning: a computational model of the amygdala, Cybernetics and Systems: An International Journal, 32, 2001, 611–636.
  6. [6] C. Lucas, D. Shahmirzadi, & N. Sheikholeslami, Introducing BELBIC: brain emotional learning based intelligent controller, Intelligent Automation and Soft Computing, 10(1), 2004, 11–21.
  7. [7] A.R. Mehrabian & C. Lucas, Emotional learning based intelligent robust adaptive controller for stable uncertain nonlinear systems, International Journal of Intelligent Technology, 1(1), 2005, 246–252.
  8. [8] M. Chandra & R. Langari, Analytical study of a control algorithm based on emotional processing, Proc. 2006 American Control Conf., Minneapolis, MN, June 14–16, 2006.
  9. [9] D. Shahmirzadi, R. Langari, L.J. Ricalde, & E.N. Sanchez, Intelligent vs. sliding mode control in rollover prevention of tractor-semitrailers, International Journal of Vehicle Autonomous Systems, 4(1), 2006, 68–87.
  10. [10] C. Lucas, R.M. Milasi, & B.N. Araabi, Intelligent modeling and control of washing machine using locally linear neuro-fuzzy (LLNF) modeling and modified brain emotional learning based intelligent controller (BELBIC), Asian Journal of Control, 8(4), 2006, 393–400.
  11. [11] N. Sheikholeslami, D. Shahmirzadi, E. Semsar, C. Lucas, & M.J. Yazdanpanah, Applying brain emotional learning algorithm for multivariable control of HVAC systems, Journal of Intelligent and Fuzzy Systems, http://iospress.metapress.com/content/27rc67ym3vn2/?p= 9f6cb5721343466ca9fffdf5b07ae51f&pi=0, 17(1), 2006, 35–46.
  12. [12] R. Mehrabian, C. Lucas, & J. Roshanian, Aerospace launch vehicle control: an intelligent adaptive approach, Aerospace Science and Technology, 10(2), 2006, 149–155.
  13. [13] H. Rouhani, M. Jalili, B.N. Araabi, W. Eppler, & C. Lucas, Brain emotional learning based intelligent controller applied to neurofuzzy model of micro-heat exchanger, Expert Systems with Applications, 32(3), 2007, 911–918.
  14. [14] S. Jafarzadeh, R. Mirheidari, M.R.J. Motlagh, & M. Barkhordari, Designing PID and BELBIC controllers in-path tracking problem, International Journal of Computers Communications & Control, 3, 2008, 343–348.
  15. [15] Y. Kim, C. Kim, & R. Langari, Novel bio-inspired smart control for hazard mitigation of civil structures, Smart Materials & Structures, 19(11), 2010, 115009. doi: 10.1088/0964-1726/19/11/115009.
  16. [16] C. Kim & R. Langari, Target tracking control of a mobile robot using a brain limbic system based control strategy, Proc. IEEE Int. Conf. on Intelligent Robots and Systems, St. Louis, MO, October 11–15, 2009, 5059–5064.
  17. [17] J. Moren & C. Balkenius, A computational model of emotional learning in the amygdala, in J.A. Mayer, A. Berthoz, D. Floreano, H.L. Roitblat, & S.W. Wilson (Eds.), From animals to animats 6 (Cambridge: MIT Press, 2000), 383–391.
  18. [18] R. Siegwart & I.R. Nourbakhsh, Introduction to autonomous mobile robots (Cambridge, MA: MIT Press, 2004).
  19. [19] J. Moren, Emotion and learning – A computational model of the amygdale, doctorial dissertation, Lund University, Sweden, 2002.

Important Links:

Go Back