Mehrdad R. Kermani
[1] W.J. Book, Recursive lagrangian dynamics of flexible manip-ulator arms, The International Journal of Robotics Research,3, 1984, 87–101. [2] B.S. Yuan, W.J. Book, & J.D. Huggins, Control of multi-linkflexible manipulators with decentralized approach, Proc. of11th IFAC World Congress, Tallinn, Estonia, 1990, 255–260. [3] S.K. Dwivedy & P. Eberhard, Dynamic analysis of flexiblemanipulators, a literature review, Mechanism and MachineTheory, 41(7), 2006, 749–777. [4] A. De Luca, S. Iannitti, R. Mattone, & G. Oriolo, Control prob-lems in underactuated manipulators, Proc. Of IEEE/ASMEInternational Conference on Advanced Intelligent Mechatron-ics, Como, Italy, July 2001, 855–861. [5] A. Benosman & G.L. Vey, Control of flexible manipulators:A survey, Robatica, 22(5), 2004, 533–545. [6] M.R. Kermani, M. Moallem, & R.V. Patel, Applied vibrationsuppression using piezoelectric materials (NY: Nova SciencePublisher, 2008). [7] E.F. Crawley & J.D. Luis, Use of piezoelectric actuatorsas elements of intelligent structures, American Institute ofAeronautics and Astronautics, 25(10), 1987, 1373–1385. [8] N.W. Hagood, W.H. Chung, & A. von Flotow, Modeling ofpiezoelectric actuator dynamics for active structural control,Journal of Intelligent Material Systems and Structures, 1(3),1990, 327–354. [9] A. Benjeddou, Advances in piezoelectric finite element modelingof adaptive structural elements: A survey, Computers andStructures, 76(1–3), 2000, 347–363. [10] M.R. Kermani, R.V. Patel, & M. Moallem, Flexture controlusing piezostack actuators: Design and implementation, IEEE-ASME Transactions on Mechatronics, 10(2), 2005, 181–188. [11] S. Hanagud, M. Bayon de Noyer, H. Luo, D. Henderson, &K.S. Nagaraja, Tail buffet alleviation of high performance twintail aircraft using piezo-stack actuators, American Institute ofAeronautics and Astronautics, 40(4), 2002, 619–627. [12] M.R. Kermani, R.V. Patel, & M. Moallem, Multimode controlof a large-scale robotic manipulator, IEEE Transactions onRobotics, 23(6), 2007, 1264–1270. [13] M. Ewing, Another second order beam vibration theory:explicit bending, wrapping flexibility, and restraint, Journalof Sound and Vibration, 137(1), 1990, 43–51. [14] T.C. Huang, The effect of rotary inertia and of shear de-formation on the frequency and normal mode equations ofuniform beams with simple end conditions, Journal of AppliedMechanics, 28, 1961, 579–584. [15] K.T. Chan & X.Q. Wang, Free vibration of a Timoshenkobeam partially loaded with distributed mass, Journal of Soundand Vibration, 206(3), 1997, 353–369. [16] R. Haberman, Elementary applied partial differential equationwith Fourier series and boundary value problems (NJ: PrenticeHall, 1998). [17] R.L. Clark, W.R. Saunders, & G. Gibbs, Adaptive structures:Dynamics and control (NY: John Wiley, 1998).
Important Links:
Go Back