IMAGE ENLARGEMENT BY LAGRANGE INTERPOLATION

Yung-Gi Wu

References

  1. [1] M. Abramowitz & I.A. Stegun, Handbook of mathematicalfunctions with formulas, graphs, and mathematical tables,9th ed., (New York: Dover, 1972).
  2. [2] H. Jeffreys & B. Jeffreys, Methods of mathematical physics,3rd ed., (England: Cambridge University Press, 1988).
  3. [3] http://mathworld.wolfram.com/LagrangeInterpolatingPolyno-mial.html
  4. [4] K.H. Chung, Y.H. Fung, & Y.H. Chan, Image enlargementusing fractal, Proc. of IEEE International Conference onAcoustics, Speech, and Signal Processing, Hong Kong, China,2003, 273–276.
  5. [5] H. Kawano, N. Suetake, B. Cha, & T. Aso, Image enlarge-ment by using self-decomposed codebook and Mahalanobis dis-tance, IEICE TRANSACTIONS on Information and Systems(Japanese Edition), J91-D(8), 2008, 1983–1985.
  6. [6] A. Watanabe & A. Taguchi, Improvement of the image enlarge-ment method based on the Laplacian pyramid representation,Proc. of the 47th Midwest Symposium on Circuits and Systems,Hiroshima, Japan, 2, 2004, 585–588.
  7. [7] C.H Hsieh & R.H. Hung, Image enlargement based on Greypolynomial interpolation, Proc. of the 11th Grey System Theoryand Application Conference, Hsin Chu, Taiwan, 2006, C2–3.
  8. [8] Y.G. Wu & C.H. Wu, Image vector quantization codec in-dices recovery using Lagrange interpolation, Image and VisionComputing, 26, 2008, 1171–1177.

Important Links:

Go Back