Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
A NOVEL MACHINE VISION-BASED MOBILE ROBOT NAVIGATION SYSTEM IN AN UNKNOWN ENVIRONMENT
Ming-Shaung Chang and Jung-Hua Chou
References
[1] Y.K. Hwang & N. Ahuja, A potential field approach to path planning,
IEEE Transactions on Robotics and Automation, 8
(1), 1992, 23–32.
[2] M.H. Mabrouk & C.R. McInnes, Solving the potential field local minimum problem using internal agent states,
Robotics and Autonomous Systems, 56
(12), 2008, 1050–1060.
[3] J. Borenstein & Y. Koren, Real-time obstacle avoidance for fast mobile robots,
IEEE Transactions on Systems, Man and Cybernetics, 19
(5), 1989, 1179–1187.
[4] S. Sarkar, S. Reynolds, & E. Hall, Virtual force field based obstacle avoidance and agent based intelligent mobile robot,
Proc. SPIE-The International Society for Optical Engineering
, Boston, USA, 2007, 67640R1–67640R12.
[5] K. Ishay, R. Elon, & R. Ehud, TangentBug: A range-sensorbased navigation algorithm,
International Journal of Robotics Research, 17
(9), 1998, 934–953.
[6] N. James & B. Thomas, Performance comparison of bug navigation algorithms,
Journal of Intelligent and Robotic Systems: Theory and Applications, 50
(1), 2007, 73–84.
[7] G. Gini & A. Marchi, Indoor robot navigation with single camera vision,
Proc. 2nd International Workshop on Pattern Recognition in Information Systems
, Ciudad Real, Spain, 2002, 67–76.
[8] V. Anand & A. Bala, Optimal path planning using an improved A Algorithm for homeland security applications,
Proc. IASTED International Conf. on Artificial Intelligence and Applications
, Innsbruck, Austria, 2006, 50–55.
[9] F. Haro & M. Torres, A comparison of path planning algorithms for omni-directional robots in dynamic environments,
Proc. 3rd IEEE Latin American Robotics Symposium
, Santiago, Chile, 2006, 18–25.
[10] M. Gemeinder & M. Gerke, A GA-based path planning for mobile robot systems employing an active search algorithm,
Applied Soft Computing Journal, 3
(2), 2003, 149–158.
[11] T. Manikas, K. Ashenayi, & R. Wainwright, Genetic algorithms for autonomous robot navigation,
IEEE Instrumentation and Measurement Magazine, 10
(6), 2007, 26–31.
[12] B. Kimiaghalam, A. Homaifar, B. Suttikulvet, & B. Sayyarrodsari, A multi-layered multi fuzzy inference systems for autonomous robot navigation and obstacle avoidance,
Proc. 10th IEEE International Conf. on Fuzzy Systems
, Melbourne, Australia, 2001, 340–343.
[13] T. Zheng, Real-time motion planning for a mobile robot in an unknown environment using a neuro-fuzzy based approach,
Proc. Control systems and Robotics International Conf. on Mechatronics and Information Technology
, Chongqing, China, 2005, 20–23.
[14] M. Wang & J. Liu, Fuzzy logic-based real-time robot navigation in unknown environment with dead ends,
Robotics and Autonomous Systems, 56
(7), 2008, 625–643.
[15]G.N. Desouza & A.C. Kak, Vision for mobile robot navigation: A survey,
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24
(2), 2002, 237–267.
[16] M. Rous, H. Lupschen, & K.F. Kraiss, Vision-based indoor scene analysis for natural landmark detection,
Proc. IEEE International Conf. on Robotics and Automation
, Barcelona, Spain, 2005, 4642–4647.
[17] B. Nabbe,
Extending the path-planning horizon
, Ph.D. Dissertation, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, July 2005.
[18] Y. Li, C. Li, & Z. Zhang, Search strategy of path for mobile robot,
Proc. IEEE International Conf. on Vehicular Electronics and Safety
, Xi’an, China, 2005, 222–227.
Important Links:
Abstract
DOI:
10.2316/Journal.206.2010.4.206-3372
From Journal
(206) International Journal of Robotics and Automation - 2010
Go Back