Carlile Lavor, Antonio Mucherino, Leo Liberti, and Nelson Maculan
View Full Paper
[1] G.M. Crippen & T.F. Havel, Distance geometry and molecular conformation (New York: John Wiley & Sons, 1988). [2] T.F. Havel, Distance geometry, in D.M. Grant & R.K. Harris (Eds.), Encyclopedia of nuclear magnetic resonance (New York: Wiley, 1995), 1701–1710. [3] T. Schlick, Molecular modelling and simulation: An interdisciplinary guide (New York: Springer, 2002). [4] C. Lavor, L. Liberti, & N. Maculan, Molecular distance geometry problem, in C. Floudas & P. Pardalos (Eds.), Encyclopedia of optimization, Second Edition (New York: Springer, 2009), 2305–2311. [5] L. Liberti, C. Lavor, A. Mucherino, & N. Maculan, Molecular distance geometry methods: From continuous to discrete, International Transactions in Operational Research, 2010 (to appear). [6] J.B. Saxe, Embeddability of weighted graphs in k-space is strongly NP-hard, Proc. 17th Allerton Conference in Communications, Control, and Computing, Monticello, IL, 1979, 480–489. [7] C. Lavor, L. Liberti, & N. Maculan, Discretizable molecular distance geometry problem, Tech. Rep. q-bio.BM/0608012, arXiv, 2006. [8] L. Liberti, C. Lavor, & N. Maculan, A Branch-and-Prune algorithm for the molecular distance geometry problem, International Transactions in Operational Research, 15, 2008, 1–17. [9] R.S. Carvalho, C. Lavor, & F. Protti, Extending the geometric buildup algorithm for the molecular distance geometry problem, Information Processing Letters, 108, 2008, 234–237. [10] D. Wu, Y. Yuan, & Z. Wu, The Solution of the Distance geometry problem for protein modeling via geometric buildup, Biophysical Reviews and Letters, 3, 2008, 43–75. [11] D. Wu, Z. Wu, & Y. Yuan, Rigid versus Unique Determination of protein structures with geometric buildup, Optimization Letters, 2, 2008, 319–331. [12] C. Lavor, L. Liberti, A. Mucherino, & N. Maculan, On a discretizable subclass of instances of the molecular distance geometry problem, ACM Conference Proceedings, 24th Annual ACM Symposium on Applied Computing (SAC09), Hawaii, USA, 2009, 804–805. [13] A. Mucherino, C. Lavor, L. Liberti, & N. Maculan, On the definition of artificial backbones for the discretizable molecular distance geometry problem, Mathematica Balkanica, 23, 2009, 289–302. [14] C. Lavor, A. Mucherino, L. Liberti, & N. Maculan, An artificial backbone of hydrogens for finding the conformation of protein molecules, IEEE Conference Proceedings, Computational Structural Bioinformatics Workshop (CSBW09), Washington, DC, USA, 2009, 152–155. [15] C. Lavor, A. Mucherino, L. Liberti, & N. Maculan, Computing artificial backbones of hydrogen atoms in order to discover protein backbones, IEEE Conference Proceedings, International Conference IMCSIT09, Workshop on Combinatorial Optimization (WCO09), Poland, 2009, 751–756. [16] Q. Dong & Z. Wu, A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances, Journal of Global Optimization, 22, 2002, 365–375. [17] D. Wu & Z. Wu, An updated geometric build-up algorithm for solving the molecular distance geometry problem with sparse distance data, Journal of Global Optimization, 37, 2007, 661–673. [18] A. Mucherino & C. Lavor, The branch and prune algorithm for the molecular distance geometry problem with inexact distances, World Academy of Science, Engineering and Technology (WASET), Proceedings of the “International Conference on Bioinformatics and Biomedicine (ICBB09), Italy, 2009, 349–353. [19] A. Mucherino, L. Liberti, C. Lavor, & N. Maculan, Comparisons between an exact and a metaheuristic algorithm for the molecular distance geometry problem, ACM Conference Proceedings, Genetic and Evolutionary Computation Conference (GECCO09), Montr´al, Canada, 2009, 333–340. e [20] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, & P.E. Bourne, The Protein Data Bank, Nucleic Acids Research, 28, 2000, 235–242. [21] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, & D. Sorensen, LAPACK users’ guide, Third Edition (Philadelphia, PA: SIAM, 1999).93
Important Links:
Go Back