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MOLECULAR DISTANCE GEOMETRY

PROBLEMS USING NMR DATA
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Abstract

The molecular distance geometry problem (MDGP) is the problem

of finding the conformation of a molecule by exploiting known

distances between some pairs of its atoms. Estimates of the

distances between the atoms can be obtained through experiments of

nuclear magnetic resonance (NMR) spectroscopy. The information

on the distances, however, is usually limited, because only distances

between hydrogens and shorter than 6 Å are usually available, and

this makes the solution of the MDGP quite hard. In this paper,

we focus our attention on protein backbones and we present a

methodology for computing their full-atom conformations starting

from NMR data. This task is performed by solving two MDGPs.

First of all, only hydrogens are considered: we define an artificial

backbone of hydrogens for which particular assumptions needed for

the discretization of the problem are satisfied. This allows for

solving the first MDGP with an ad hoc algorithm. Secondly, by

exploiting the coordinates of the hydrogens and known bond lengths

and bond angles, we compute the coordinates of the other atoms

forming the protein backbone by using a polynomial-time algorithm.

Computational experiments related to real proteins are presented.
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1. Introduction

Proteins can be analysed by experiments of nuclear mag-
netic resonance (NMR) spectroscopy that is able to pro-
vide information from which the relative distances between
some pairs of atoms forming the molecule can be estimated
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[1–3]. Such estimated distances can then be used for at-
tempting a reconstruction of the three-dimensional confor-
mation of the protein, which is of fundamental importance
for understanding its dynamics, and, as a consequence, its
function. The major difficulty to be faced during this task
is that the information obtained through NMR is usually
limited, because not all the possible relative distances are
known, but only a small subset. Moreover, only distances
between pairs of hydrogens are usually available, whereas
proteins are also composed of carbon, nitrogen, oxygen and
so on.

The distances estimated through NMR can be used for
generating a set of constraints that the atoms forming the
protein must satisfy in its three-dimensional conformation.
This problem is known in the scientific literature as molec-
ular distance geometry problem (MDGP), and different
approaches for its solution have been proposed over the
years (for a review, see [4, 5]). The most natural approach
is to solve the problem by techniques for constraint satis-
faction: a conformation for the atoms of the protein must
be found so that all the available constraints are satisfied.
However, the problem is usually reformulated as a global
continuous optimization problem. In this approach, the
set of constraints based on the distances is transformed
into a penalty function which is able to give a measure of
how much the available constraints are violated. When
the penalty function is 0 for a given conformation, then
this conformation satisfies all the constraints. Therefore,
finding the global minimum of such a penalty function
equals to find a conformation for a protein which is so-
lution to the MDGP. Different penalty functions for this
purpose have been proposed, and, unfortunately, they all
have many local minima, which makes the search for their
global optimum very hard [6].

Our aim is to use a recently proposed approach for
solving MDGPs. In this approach, the domain of the
penalty function is discretized, and the optimization prob-
lem to be solved is combinatorial. After the reformulation,
the problem can be solved more easily. We refer to the
reformulated problem as discretizable MDGP (DMDGP)
[7]. A very important advantage in using this discrete
formulation to the problem is that an ad hoc algorithm,
called Branch & Prune (BP) [8], can be used for efficiently
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solving it. The algorithm is based on the exploration of
a binary tree of solutions, whose branches are pruned as
soon as infeasibilities are found. Other algorithms having
some relations with BP are given in [9–11].

The idea behind the discretization is the following. Let
a be an atom with an unknown position. Let us suppose
that the distances between a and other three atoms bi,
i∈{1, 2, 3}, are known, and that the position of each bi is
also known. Then, it can be proved that there are only
two possible positions for the atom a. This discretizes
the problem, because a binary tree of atomic positions
can be defined, where the solutions to DMDGPs can be
searched. Moreover, if there is at least a fourth atom b4
with known position, independent from the others, and
such that the distance between a and b4 is known, then we
are able to select only one feasible position for a between
the two positions previously found. This feature allows to
prune the binary tree very efficiently during the execution
of BP. In this way, an exhaustive search on the remaining
branches of the tree is not computationally expensive.

Naturally, the discretization is possible only when par-
ticular assumptions are satisfied. In the formal definition
of the DMDGP, we require that, for each atom xi, the
distances between xi and the three preceding atoms xi−3,
xi−2, and xi−1 must be known. Consequently, if the atoms
are placed following their order, the atoms xi−3, xi−2, and
xi−1 already have a known position when a position for xi

is searched. As all the distances between the atoms of the
quadruplet {xi−3, xi−2, xi−1, xi} are known by hypothesis,
the cosine of the torsion angle among these four atoms can
be computed: there are only two corresponding torsion
angles, and each of them brings to the definition of one
position for xi. The unrealistic case of aligned consecutive
atoms (for which the earlier discussion on the torsion angles
fails) is avoided by hypothesis. The interested reader can
find the formal mathematical definition of the DMDGP
in [7].

Unfortunately, the necessary assumptions for the dis-
cretization are not always satisfied. As an example, if we
consider the hydrogens of a protein and we sort them amino
acid per amino acid, following the increasing alphabetic
order of their labels (H, Hα, Hβ and so on), then it is quite
impossible to have the assumptions satisfied. The same ob-
servation can be made if only the hydrogens of the protein
backbone are considered. Indeed, in both the cases, not
all the distances in the quadruplets {xi−3, xi−2, xi−1, xi}
are found by NMR because they are usually larger than
6 Å, i.e., threshold under which distances can be obtained
through NMR. However, given a certain hydrogen H, be-
cause proteins are very compact objects, we know that
there are other hydrogens surrounding H and close enough
for having their distance detected by NMR. As a conse-
quence, there might exist a particular ordering (and may
be more than one ordering) for the hydrogens for which
the necessary assumptions for the DMDGP are satisfied.

In this paper, we focus our attention on protein back-
bones. From the NMR, we expect to obtain distances be-
tween pairs of hydrogens of the protein backbone that are
shorter than 6 Å. We will show how it is possible to define
an artificial backbone of hydrogens where the hydrogens

Figure 1. An example of binary tree associated to an
instance of the DMDGP with 6 atoms. The path marked
by boxes represents a solution.

are sorted so that the necessary assumptions are satisfied.
Then, we will show how to build the entire protein back-
bone (including the carbons and the nitrogens it contains)
by exploiting the coordinates of the hydrogens just ob-
tained and the information known a priori on bond lengths
and bond angles. Therefore, we will show how the problem
of finding the backbone of a protein can be divided in two
subproblems, where only hydrogens are considered in the
first one, and the other atoms of the backbone are consid-
ered in the second subproblem. These two subproblems
are both MDGPs, having different properties.

The remaining of the paper is organized as follows.
In Section 2, we provide an overview of the BP algorithm
which we use for solving instances of the DMDGP. In
Section 3, we present the artificial backbone of hydrogens,
where the particular ordering given to the hydrogen atoms
makes the assumptions for the DMDGP satisfied, and we
show a technique for computing the other atoms (N, Cα and
C) of the protein backbone starting from the coordinates
of the hydrogens. Computational experiments on a set of
instances related to real proteins are shown in Section 4.
Finally, conclusions are given in Section 5.

2. The Branch & Prune Algorithm

When the assumptions of the DMDGP are satisfied, a
binary tree of atomic positions can be defined and explored
with the aim of finding solutions to the problem (see Fig. 1).
As mentioned earlier, we consider the BP algorithm [8]
for solving DMDGPs, which is strongly based on this tree
structure. The binary tree of possible solutions is explored
starting from its top by placing one atom per time.

Algorithm 1 provides a sketch of the BP algorithm.
The first atom x1 can be arbitrarily placed in the position
(0, 0, 0). The second one can be placed on one of the coor-
dinate axes of the Cartesian system, so that the distance
between x1 and x2 is the one known by hypothesis. Fi-
nally, the third atom x3 can be placed on a plane formed
by two coordinate axes, so that all the known distances
are satisfied. Then, starting from the atomic position 4,
Algorithm 1 is invoked iteratively. Its input parameters are
i, the current atom whose position is searched; n, the total
number of atoms; d, the set of known distances. One of the
solutions to the problem is found when BP(n, n, d), the
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call to Algorithm 1 in which a position for xn is searched,
finds a feasible position for the last atom of the molecular
conformation.

Algorithm 1 The BP algorithm.
0: BP(i, n, d)
for (k=1, 2) do

compute the kth atomic position for the ith atom: x
(k)
i ;

check the feasibility of the atomic position x
(k)
i :

if (the atomic position x
(k)
i is feasible) then

if (i = n) then
one solution is found;

else
BP(i+ 1, n, d);

end if
else
the current branch is pruned;
end if

end for

At each step of the algorithm, two possible positions
for the current atom xi are computed, and the search is
branched. By recursing the search on each branch, the
size of the binary tree increases exponentially, because two
new branches are added to the tree at each step. For this
reason, pruning tests are used to discover infeasible atomic
positions. As soon as an atomic position is found to be
infeasible, then the corresponding branch is pruned and the
search is backtracked. The pruning phase usually reduces
the tree within manageable sizes, so that an exhaustive
search on the remaining branches is not computationally
expensive.

There are different ways for checking the feasibility of
computed atomic positions [12]. The most natural pruning
test is the following. If x′

i is one possible position for xi,
then we can compare all the known distances between xi

and xj , with j < i, to the corresponding distances that can
now be computed between x′

i and each xj . If known and
computed distances match, then x′

i is feasible, otherwise
it is infeasible. In this pruning test, it is very important
to set up the tolerance ε accurately. Indeed, as it is

Figure 2. An artificial backbone of hydrogens related to the protein backbones. Note that some of the hydrogens are
considered twice and that the considered ordering is specified by the labels associated to the edges.

impossible to test for real number equality using floating
point arithmetic, the choice of epsilon plays an important
role. Too small tolerances could force the pruning of all
the atomic positions (and no solutions are found), whereas
too large tolerances could allow too much positions to be
accepted, with a consequence enlargement of the binary
tree.

3. Computing Protein Backbones

Distances estimated by NMR are mostly between pairs
of hydrogens. To reformulate the problem of finding the
coordinates of these hydrogens as a DMDGP, we introduce
an artificial backbone mainly formed by hydrogen atoms
(see Fig. 2). The two hydrogens per amino acid of the
protein backbones are both considered (the one bound to
Cα and the one bound to N), and another hydrogen is
borrowed from the side chain of the amino acid. Glycines
only have one hydrogen in their side chains; all the other
amino acids have at least one hydrogen bound to the carbon
Cβ , and any of them can be considered in the artificial
backbone. Therefore, three hydrogens per amino acid are
considered: H (bound to N), Hα (bound to Cα) and Hβ

(from the side chain).
Let (V,<) be a subset of atoms of a protein

containing the hydrogens H, Hα and Hβ , where the
symbol< represents an ordering relation associated to the
elements of V . In other words, for each element of V , we
know which is its preceding atom, and which is its suc-
cessive atom, being both defined by the ordering <. The
proposed artificial backbone can be built as follows. Let
us organize the atoms of V so that the following ordering
is satisfied:

H1
α,H

1,H2,H1
α, . . . ,H

i
α,H

i,Hi
β ,H

i+1,Hi
α, . . . ,H

n
α,H

n,Hn
β

where the superscripts indicate the amino acid to which
the considered hydrogen belongs. Note that some of the
hydrogens are considered twice: there are two elements in
this sequence that refer to the same hydrogen. Then, let us
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add the three atoms N1, C1
α, and C1 (in this order) at the

beginning of the sequence of hydrogens, and let us add the
hydrogen Hn′

(bound to the oxygen of the last amino acid)
to its end. The obtained ordered subset (V ′, <′) represents
the artificial backbone for which the assumptions for the
DMDGP are satisfied. Naturally, V ⊂V ′, because we
considered all the hydrogens in V , we duplicated some
of them, and we added four more atoms (three at the
beginning and one at the end).

The reason why the artificial backbone mainly con-
tains hydrogen atoms is that relative distances between
hydrogens can be found by NMR. Moreover, in [13], it
has been formally proved that a necessary condition for
having the needed assumptions for the DMDGP satisfied
is that all the atoms of the artificial backbone with a rank
larger than 3 must be hydrogen atoms. We added exactly
three atoms (that are not hydrogens) at the beginning of
the artificial backbone, because they define a Cartesian
coordinate system, that we will use later during the com-
putation of the other backbone atoms. These three added
atoms correspond to the first three atoms of the protein
backbone, belonging to the first amino acid of the protein.
The needed distances between these three atoms and the
following hydrogens are all known a priori, and therefore
they do not need to be found by NMR.

A particular feature of the artificial backbone is that
the same hydrogen can be considered twice in the sequence.
Though this might appear nonsensical, it is very useful
for reducing the relative distances in the quadruplets of
consecutive atoms, and for making them shorter than the
6 Å threshold. Simple computations based on the known
bond lengths and angles showed that the distances needed
for having the discretization of the problem (the ones
between the atoms of the quadruplets) are always shorter
than 6 Å. Only in a few cases, some of such distances could
be, in theory, larger than 6 Å, but this never occurred
during our computational experiments. Therefore, the
assumptions for the DMDGP are satisfied, and the problem
of finding the coordinates of these atoms can be solved
by applying the BP algorithm. This algorithm is able to
provide very accurate solutions, containing the coordinates
of all the hydrogens. Naturally, the coordinates of some
hydrogens are provided twice, but, after the execution
of the algorithm, the duplicated coordinates can just be
discarded. Other details regarding the artificial backbone
of hydrogens can be found in [13–15].

The coordinates of the atoms N, Cα, and C of the pro-
tein backbones can be found by solving another MDGP. In
this case, we do not exploit any information from the NMR.
As some distances between hydrogens and the other back-
bone atoms are known a priori (they can be computed by
using information on bond lengths and angles), supposing
that the coordinates of the hydrogens H, Hα and Hβ are

Figure 3. The atoms and the distances used in the three linear systems are used to determine the protein backbone.

already known, we can observe that this particular MDGP
satisfies assumptions that are stronger than the ones of the
DMDGP. In practise, not only we have the possibility to
discretize the problem, but we can always associate only
one position to each atom a. As explained in the Introduc-
tion, this is possible when the distances between an atom
a and an atom bi, with i∈{1, 2, 3, 4}, are known, and the
coordinates of each bi is also known.

To solve this problem, we follow the method presented
in [16, 17]. Let da,bi be the Euclidean distance between the
atom a and the atom bi, for all i∈{1, 2, 3, 4}. To find the
coordinates of a, the following system needs to be solved:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

||a− b1|| = da,b1

||a− b2|| = da,b2

||a− b3|| = da,b3

||a− b4|| = da,b4

(1)

This is a quadratic system of four equations in three
variables. However, as shown in [16, 17], if the system of
linear equations:

Ax = b (2)

where,

A = −2

⎡
⎢⎢⎢⎣

(b1 − b2)
T

(b1 − b3)
T

(b1 − b4)
T

⎤
⎥⎥⎥⎦

x = a

b =

⎡
⎢⎢⎢⎣

(d2a,b1 − d2a,b2)− (||b1||2 − ||b2||2)
(d2a,b1 − d2a,b3)− (||b1||2 − ||b3||2)
(d2a,b1 − d2a,b4)− (||b1||2 − ||b4||2)

⎤
⎥⎥⎥⎦

is solved, its solution is also solution for the quadratic
system (1). Thus, the MDGP related to the protein
backbone can be solved by solving a sequence of 3× 3
linear systems, each one in correspondence with an atom
of the protein backbone to be placed.

For each atom N, Cα, and C of the protein backbone,
there are always four atoms bi that can be considered
in the linear system. For computing the position of the
nitrogen N of the protein backbone, e.g., the following four
atoms with known positions can be considered: Cα and C
of the previous amino acid, the hydrogen H bound to N and
the hydrogen Hα bound to the following Cα (see Fig. 3).
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The distances between C and N and between N and H
are known because these two pairs of atoms are chemically
bound. The distance between Cα and N is also known,
because the bond lengths Cα −C and C−N are known,
and the angle among the three atoms Cα −C−N is also
known. For the same reason, the distance between N and
Hα is available. The solution of the linear system (2) allows
to identify the coordinates of N. Similar observations can
be made for the other two systems, related to the backbone
atoms Cα and C. The reader is referred to Fig. 3 to find
out which atoms and distances can be considered in each
linear system.

4. Computational Experiences

We will show in this section how instances of the DMDGP
related to artificial backbones of hydrogens can be effi-
ciently solved by the BP algorithm, and how the solutions
found by BP can be exploited for computing the other
backbone atoms of a protein by solving a sequence of 3× 3
linear systems. All the codes were written in C program-
ming language and all the experiments were carried out on
an Intel Core 2 CPU 6400 @ 2.13GHz with 4GB RAM,
running Linux. The codes have been compiled by the
GNU C compiler v.4.1.2 with the -O3 flag.

Before presenting the computational experiments, we
point out that, in the whole above discussion, we always
supposed that the values of the known distances are exact.
We are aware this is not true in general when dealing with
data obtained by NMR. However, to show the correctness
of our approach, we provide in this section some computa-
tional experiments where all the distances are considered
as exact. Work is in progress for generalizing our approach
to the case in which the considered distances are affected
by errors and noise. Preliminary studies in this direction
have been presented in [18, 19].

We generated a set of instances from the known con-
formations of some proteins, downloaded from the Pro-
tein Data Bank (PDB) [20], and we extracted from such
conformations only the information regarding our artificial
backbones. The atoms of the artificial backbones are all
sorted in accordance with the special ordering discussed
in Section 3, and only distances smaller than 6 Å are con-
sidered. For each amino acid, three hydrogen atoms are
considered, and five in total are included in the instance,
because two of them are considered twice. Apart from the
first three atoms, the artificial backbone is composed of
the hydrogens H, Hα, and Hβ .

All the instances we generated belong to the class of
instances of the DMDGP, because the necessary assump-
tions are satisfied. We applied the BP algorithm for solv-
ing such instances, and the computational experiments are
shown in Table 1. In the table, n is the number of atoms
included in the instance. It is always a number which is
divisible by 5, because each amino acid of the considered
artificial backbone contains exactly five hydrogens (two of
them are considered twice). m is the number of known dis-
tances (all these distances are shorter than 6 Å). We eval-
uated the quality of the obtained solutions by employing a
commonly used penalty function, the largest distance

Table 1
Results Obtained by the BP Algorithm on a Set of

Artificial Backbones Obtained from Protein
Conformations Downloaded from the PDB

Instance

Name n m LDE CPU Time

1brv 95 994 1.12e−08 0.00

1a11 125 1,125 2.72e−09 0.00

1acw 145 1,462 2.03e−08 0.00

1bbl 185 1,562 3.12e−09 0.00

1erp 190 1,831 4.10e−09 0.00

1aqr 200 1,697 1.03e−08 0.00

1k1v 205 1,702 2.31e−09 0.00

1h1j 220 1,880 4.09e−09 0.00

1dv0 225 2,116 4.77e−09 0.00

1jkz 230 2,030 1.20e−08 0.00

1ahl 245 2,181 4.54e−08 0.17

1ccq 300 2,625 3.80e−08 0.01

1bqx 385 3,670 1.47e−08 0.01

1a2s 445 4,988 3.49e−08 0.00

1ag4 515 5,262 1.02e−07 0.00

1acz 540 4,776 2.77e−08 0.02

1itm 650 6,552 3.24e−08 1.99

1b4c 920 8,833 2.37e−08 0.01

1la3 940 8,335 1.21e−08 2.87

1a23 945 10,416 5.58e−08 0.24

1oy2 955 8,372 5.16e−08 46.12

1d8v 1,315 14,184 6.48e−08 1.14

1ezo 1,850 17,996 7.45e−08 86.60

error (LDE):

LDE({x1, x2, . . . , xn}) = 1

m

∑
{i,j}

| ||xi − xj ||−dij |
dij

In the definition of LDE, m is the total number of
available distances, xi is the generic atom of the confor-
mation, dij is the known distance between xi and xj and
||xi −xj || is the computed distance between xi and xj .
As there are distances equal to zero, we considered in the
experiments a modified version of this function in which
the terms containing divisions by zero are discarded (see
[15] for more details). Finally, the CPU time (in seconds)
is given for each experiment.

The experiments show that the BP algorithm is very
efficient in finding solutions to the DMDGP in terms of
quality of the solutions and CPU time, as already shown
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in previous works. In these experiments, each solution
consists of the set of coordinates of the hydrogen atoms H,
Hα and Hβ of the artificial backbones.

These coordinates are then exploited in the linear sys-
tems for finding the coordinates of the other backbone
atoms. In all the experiments, we obtained a correct pro-
tein backbone for each considered artificial backbone. Each
experiment took less than 1 s of CPU time for computing
the sequence of linear systems (in our implementation, the
LAPACK library [21] is used for this purpose).

5. Conclusions

The discretization of MDGPs is possible only when par-
ticular assumptions are satisfied. We showed in this paper
that these assumptions can be satisfied when considering
data from NMR spectroscopy. To this aim, we reordered
the hydrogens of the protein backbones in a special way,
so that all the needed distances are supposed to be found
by NMR. Moreover, we also showed that, after the iden-
tification of the coordinates of the hydrogens, the other
backbone atoms can also be found by a discrete approach
and computed by solving a sequence of linear systems.

In this paper, we focused our attention on protein
backbones, but the same ideas can also be applied to whole
protein conformations. What is needed to do is to extend
the artificial backbone of hydrogens to all the hydrogens
contained into the protein, and to define new linear systems
to be used for computing the coordinates of atoms (which
are not hydrogens) of the side chains.

Another important point is the management of the
noise which can affect data obtained by NMR. In practise,
exact distances are usually not available, but only their
approximations, and this must be taken into account when
working on the artificial backbones. The computation
of the other backbone atoms by the sequence of linear
systems, however, remains unchanged, because it is based
on known values of bond lengths and bond angles.

These studies on the discretization of the MDGPs aris-
ing in biology are bringing to several interesting subprob-
lems. Suitable strategies for their solutions are of increas-
ing interest, because the discrete approach could allow the
identification of protein conformations (or conformations
of molecules in general) having a high precision. Future
works will be addressed to this final aim.
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