FIRST-ORDER KINEMATIC CONTROL OF MANIPULATORS WITH AN INACTIVE LAST JOINT

M. Karimi and S.A.A. Moosavian

References

  1. [1] A. Shkolnik & R. Tedrake, High-dimensional underactuatedmotion planning via task space control, Proc. of the IEEE/RSJInt. Conf. on Intelligent Robots and Systems, Nice, France,2008.
  2. [2] A. De Luca, S. Iannitti, R. Mattone, & G. Oriolo, Under-actuated manipulators: Control properties and techniques,Machine Intelligence and Robotic Control, 4(3), 2002, 113–125.
  3. [3] I. Tortopidis & E. Papadopoulos, On point-to-point mo-tion planning for underactuated space manipulator systems,Robotics and Autonomous Systems, 55(2), 2007, 122–131.
  4. [4] R.G. Roberts, The dexterity and singularities of an underactu-ated robot, Journal of Robotic System, 18(4), 2001, 159–169.
  5. [5] A. Jain & G. Rodriguez, An analysis of the kinematics anddynamics of underactuated manipulators IEEE Transactionson Robotics and Automation, 9(4), 1993, 411–422.
  6. [6] M. Bergerman & Y. Xu, Robust joint and Cartesian controlof underactuated manipulators, Transactions of the ASME,Journal of Dynamic Systems, Measurement, and Control,118(3), 1996, 557–565.
  7. [7] J.H. Shin & J.J. Lee, Dynamic control of underactuatedmanipulators with free-swinging passive joints in Cartesianspace, Proc. IEEE Int. Conf. on Robotics and Automation,Albuquerque, New Mexico, 1997.
  8. [8] H. Arai, K. Tanie, & N. Shiroma, Nonholonomic control of athree-dof planar underactuated manipulator, IEEE Transac-tions on Robotics and Automation, 14(5), 1998, 681–695.
  9. [9] A. De Luca & G. Oriolo, Trajectory planning and control forplanar robots with passive last joint, International Journal ofRobotics Research, 21(5–6), 2002, 575–590.
  10. [10] T. Mita & T.K. Nam, Control of underactuated manipulatorsusing variable period deadbeat control, IEEE Int. Conf. onRobotics and Automation, Seoul, Korea, 2001, 2735–2740.
  11. [11] L. Udawatta, K. Watanabe, K. Izumi, et al., Control ofunderactuated manipulators using a fuzzy logic based switchingcontroller, Journal of Intelligent and Robotic Systems, 38,2003, 155–173.
  12. [12] A.D. Mahindrakar, R.N. Banavar, & M. Reyhanoglu, Control-lability and point-to-point control of 3-DOF planar horizontalunderactuated manipulators, International Journal of Control,78(1), 2005, 1–13.75
  13. [13] L. Li, et al., Kinematic control of redundant robots and themotion optimizability measure, IEEE Transactions on Systems,Man, and Cybernetics – Part B: Cybernetics, 31(1), 2001.
  14. [14] L. Zlajpah & B. Nemec, Kinematic control algorithms for on-line obstacle avoidance for redundant manipulators, Proc. ofthe Int. Conf. on Intelligent Robots and Systems, Lausanne,Switzerland, 2002.
  15. [15] B. Bayle, et al., Kinematic control of wheeled mobile ma-nipulators, Proc. of the Int. Conf. on Intelligent Robots andSystems, Lausanne, Switzerland, 2002.
  16. [16] L. Sciavicco & B. Siciliano, Modeling and control of robotmanipulators, Second Edition (London: Springer, 2000).
  17. [17] G. Oriolo & Y. Nakamura, Free-joint manipulators: Motioncontrol under second-order nonholonomic constraints, Proc.of the Int. Conf. on Intelligent Robots and Systems, Osaka,Japan, 1991, 1248–1253.
  18. [18] Y. Nakamura, Advanced robotics: Redundancy and optimiza-tion, (Addison-Wesley Longman Publishing Co., Inc. Boston,MA, USA, 1990).
  19. [19] S.A.A. Moosavian & E. Papadopoulos, Modified transposeJacobian control of robotic systems, Automatica, 43(7), 2007,1226–1233.
  20. [20] S.A.A. Moosavian & H.R. Ashtiani, Cooperation of robotic ma-nipulators using non-model-based multiple impedance control,Journal of Industrial Robots, 35(6), 2008, 549–558.
  21. [21] M. Karimi & S.A.A. Moosavian, Control of underactuatedmanipulators using modified transpose effective Jacobian, Proc.of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems(IROS 08), Nice, France, 2008.
  22. [22] J.J. Craig, Introduction to robotics, mechanics and control,(Addison-Wesley, Longman Publishing Co., Inc. Boston, MA,USA, 1989.).

Important Links:

Go Back