SERVO-CONSTRAINT GENERALIZED INVERSE DYNAMICS FOR ROBOT MANIPULATOR CONTROL DESIGN

A.H. Bajodah

References

  1. [1] F.L. Lewis, D.M. Dawson, & C.T. Abdallah, Robot manipulatorcontrol theory and practice. (Second Edition, New York, NY:Marcel Dekker, Inc., 2004).
  2. [2] J.J. Craig, Introduction to robotics: Mechanics and control.(Pearson Prentice Hall, 2005). Upper Saddle Revier, NJ 07458
  3. [3] O. Khatib, A unified approach for motion and force control ofrobot manipulators: The operational space formulation, IEEEJournal on Robotics and Automation, RA-3(1), 1987, 43–53.
  4. [4] S.K. Lin, Singularity of a nonlinear feedback control scheme forrobots. IEEE Transactions on Systems, Man, and Cybernitics,19(1), 1989, 134–139.
  5. [5] L. Sciavicco & B. Siciliano, Modelling and control of robotmanipulators, (Second Edition, Springer-Verlag, 2000) London.
  6. [6] E.H. Moore, On the reciprocal of the general algebraic matrix,Bulletin of the American Mathematical Society, 26, 1920,394–395.
  7. [7] R. Penrose, A generalized inverse for matrices, Proceedings ofthe Cambridge Philosophical Society, 51, 1955, 406–413.
  8. [8] A. Liegeois, Automatic supervisory control of the configurationand behavior of multi-body mechanisms, IEEE Transactionson Systems, Man, and Cybernetics, 7(12), 1977, 868–871.
  9. [9] T.N.E. Greville, The pseudoinverse of a rectangular or singularmatrix and its applications to the solutions of systems of linearequations, SIAM Review, 1(1), 1959, 38–43.
  10. [10] Y. Nakamura, Advanced robotics: Redundancy and optimiza-tion, (Boston: Addison-Wesley, 1991).
  11. [11] Y. Nakamura, H. Hanafusa, & T. Yoshikawa, Task-prioritybased redundancy control of robot manipulators, InternationalJournal of Robotics Research, 6(2), 1987, 3–15.
  12. [12] R.V. Mayorga, F. Janabi-Sharifi, & A.K.C. Wong, A fastapproach for the robust trajectory planning of redundantrobot manipulators, Journal of Robotic Systems, 12(2), 1995,147–161.
  13. [13] A.A. Maciejewski & C.A. Klein, Obstacle avoidance for kine-matically redundant manipulators in dynamically varying en-vironments, International Journal of Robotics Research, 4(3),1985, 109–117.
  14. [14] J.Y.S. Luh, M.M. Walker, & R.P.C. Paul, Resolved accelerationcontrol of mechnical manipulators, IEEE Transactions onAutomatic Control, AC-25, 1980, 468–473.
  15. [15] A.H. Bajodah, D.H. Hodges, & Y.-H. Chen, Inverse dynamicsof servo-constraints based on the generalized inverse, NonlinearDynamics, 39(1–2), 2005, 179–196.
  16. [16] A.H. Bajodah, Perturbed feedback linearization of attitudedynamics, Proc. American Control Conference, Seattle, USA,June, 2008.
  17. [17] B. Gorla & M. Renaud, Robots manipulators, (Toulouse:Cepadues-Editions, 1984).
  18. [18] A.H. Bajodah, Controls coefficient generalized inversion lya-punov design for spacecraft attitude control, Proc. IEEE Con-ference on MSC, San Antonio, USA, September, 2008.
  19. [19] Y. Nakamura & H. Hanafusa, Inverse kinematic solutions withsingularity robustness for robot manipulator control, Journalof Dynamic Systems, Measurements, and Control, 10(8), 1986,163–171.
  20. [20] C.W. Wampler II, Manipulator inverse kinematic solutionsbased on vector formulations and damped least-squares meth-ods, IEEE Transactions on Systems, Man, and Cybernetics,SMC-16, 1986, 93–101.
  21. [21] K. Kreutz, On manipulator control by exact linearization, IEEETransactions on Automatic Control, 34(2), 1989, 763–767.
  22. [22] F.E. Udwadia & R.E. Kalaba, Analytical dynamics, a newapproach, (New York, NY: Cambridge University Press, 1996).
  23. [23] D. Bernstein, Matrix mathematics: theory, facts, and formulaswith application to linear system theory. (Princeton UniversityPress, 2005). Princeton, NJ 08540.
  24. [24] H.K. Khalil, Nonlinear systems, Third Edition (Prentice-Hall,Inc., 2002). Upper Saddle River, NJ 07458.

Important Links:

Go Back