A COMBINATION OF NEURAL NETWORK AND RITZ METHOD FOR ROBUST MOTION PLANNING OF MOBILE ROBOTS ALONG CALCULATED MODULAR PATHS

S.H. Sadati, K. Alipour, and M. Behroozi

References

  1. [1] J. Desai, C.C. Wang, M. Zerfan, & V. Kumar, Motion planning for multiple mobile manipulators, Proceedings of the IEEE International Conference on Robotics and Automation, 3, 1996, 2073–2078.
  2. [2] J.P. Desai & V. Kumar, Motion planning of nonholonomiccooperating mobile manipulators, Journal of Robotic Systems, 16 (10), 1999, 557–579.
  3. [3] E. Papadopoulos & I. Poulakakis, Planning and obstacle avoidance for mobile robots, Proc. IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, 2001.
  4. [4] E. Papadopoulos & J. Poulakakis, On motion planning ofnonholonomic mobile robots, Int. Symp. of Robotics, Montreal, Canada, 2000, 77–82.
  5. [5] E. Papadopoulos, I. Papadimitriou, & I. Poulakakis,Polynomial-based obstacle avoidance techniques for nonholonomic mobile manipulator systems, Journal of Robotics and Autonomous Systems, 41 (4), 2005, 229–247.
  6. [6] H.G. Tanner & K.J. Kyriakopoulos, Nonholonomic motionplanning for mobile manipulators, Proceedings of the IEEEInternational Conference on Robotics and Automation, 2, 2000, 1233–1238.
  7. [7] M. Pasquier & T. Hasegawa, A motion planning system fora mobile robot with manipulator, Proceedings of the IEEEInternational Conference on Robotics and Automation, 2, 1991, 1000–1005.
  8. [8] K. Nagatani, T. Hirayama, A. Gofuku, & Y. Tanaka, Motion planning for mobile manipulator with keeping manipulability, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002, 1663–1668.
  9. [9] R. Bauer, Active maneuvers for supporting the localization process of autonomous mobile robot, Journal of Robotics and Autonomous Systems, 1995, 39–46.
  10. [10] Y. Guo & L. Parker, A distributed and optimal motion planning approach for multiple mobile robots, Proceedings of the IEEE International Conference on Robotics and Automation, 3, 2002, 2612–2619.
  11. [11] G.A.S. Pereira, Motion planning and control of cooperating mobile robots based on graph connectivity, Ph.D. Dissertation, Department of Computer Science, University of Minas Gerais, Brazil, 2003.
  12. [12] M.W. Chen & A.M.S. Zalzala, Dynamic modeling and genetic-based trajectory generation for non-holonomic mobile manipulators, Journal of Control Engineering Practice, 5 (1), 1997, 39–48.
  13. [13] A. Yamashita, M. Fukuchi, J. Ota, T. Arai, & H. Asama,Motion planning for cooperative transportation of a large object by multiple mobile robots in a 3D environment, Proceedings of the IEEE International Conference on Robotics and Automation, 4, 2000, 3144–3151.
  14. [14] A. Yamashita, K. Kawano, J. Ota, T. Arai, M. Fukuchi,J. Sasaki, & Y. Aiyama, Planning method for cooperativemanipulation by multiple mobile robots using tools with motion errors, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2, 1999, 978–983.
  15. [15] D.H. Shin, B.S. Hamner, S. Singh, & M. Hwangbo, Motionplanning for a mobile manipulator with imprecise locomotion, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Las Vegas, USA, 2003, 847–853.
  16. [16] I. Duleba & J.Z. Sasiadek, Nonholonomic motion planning based on Newton algorithm with energy optimization, IEEE Transactions on Control Systems Technology, 11 (3), May 2003, 355–363.
  17. [17] Y. Mei, Y.-H. Lu, Y.C. Hu, & C.S.G. Lee, Energy-efficient motion planning for mobile robots, Proc. of the IEEE Int. Conf. on Robotics and Automation, New Orleans, USA, April 2004, 4344–4349.
  18. [18] Z. Shiller, Y. Fujita, D. Ophir, & Y. Nakamura, Computing a set of local optimal paths through cluttered environments and over open terrain, Proc. IEEE Int. Conf. on Robotics and Automation, New Orleans, USA, April 2004, 4759–4764.
  19. [19] L.F. Lee, R. Bhatt, & V. Krovi, Comparison of alternate methods for distributed motion planning of robot collectives within a potential field framework, Proc. IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, April 2005, 99–104.
  20. [20] X.-J. Jing, Behavior dynamics based motion planning of mobile robots in uncertain dynamic environments, Journal of Robotics and Autonomous Systems, 53, 2005, 99–123.
  21. [21] D.K. Liu, D. Wang, & G. Dissanayake, A force field method based multi-robot collaboration, Proc. IEEE Int. Conf. on Robotics, Automation and Mechatronics, Bangkok, Thailand, April 2006, 662–667.
  22. [22] N. Yamanobe, T. Arai, & R. Ueda, Robot motion planningby reusing multiple knowledge under uncertain conditions,Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China, October 2006, 2232–2237.
  23. [23] T. Tan, Z. Jiang, & Z. Zhou, A nonholonomic motion planning and control based on chained form transformation, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China, October 2006, 3149–3153.
  24. [24] R. Rastegari & S.A.A. Moosavian, Multiple impedance control for manipulation of an object by a nonholonomic mobile manipulator, Journal of Tehran University, 39 (1), 2005, 15–29.
  25. [25] S. Scheding, G. Dissanayake, E.M. Nebot, & H.D. Whyte, An experiment in autonomous navigation of an underground mining vehicle, IEEE Transactions on Robotics and Automation, 15 (1), 1999, 85–95.
  26. [26] E. Papadopoulos & J. Poulakakis, Planning and model-based control for mobile manipulators, Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 3, 2000, 1810–1815.
  27. [27] S.K. Saha & J. Angeles, Dynamics of nonholonomic mechanical systems using a natural orthogonal complement, ASME Journal of Applied Mechanics, 58, 1991, 238–244.
  28. [28] D.E. Kirk, Optimal control theory an introduction (Englewood Cliffs, NJ: Prentice-Hall Inc., 1970).
  29. [29] A.E. Bryson & Y.-C. Ho, Applied optimal control – optimization, estimation, and control (Ginn and Company, 1969).
  30. [30] L. Elsgolts, Differential equations and the calculus of variations (University Press of the Pacific, 2003).
  31. [31] K. Kant & S. Zucker, Toward efficient trajectory planning: the path-velocity decomposition, International Journal of Robotics Research, 5 (3), 1986, 72–89.
  32. [32] J.E. Bobrow, S. Dubowsky, & J.S. Gibson, Time-optimal control of robotic manipulators along specified paths, International Journal of Robotics Research, 4 (3), 1985, 3–17.
  33. [33] Z. Shiller & S. Dubowsky, On the optimal control of robotic manipulators with actuator and end-effector constraints, Proceedings of the IEEE International Conference on Robotics and Automation, 2, 1985, 614–620.
  34. [34] X. Chen, K. Watanabe, K. Kiguchi, & K. Izumi, Path tracking based on closed-loop control for a quadruped robot in a cluttered environment, ASME Transactions on Dynamic systems, Measurement and Control, 124, 2002, 272–280.
  35. [35] J.-C. Latombe, Robot motion planning (Boston, MA: Kluwer Academic Publishers, 1991).
  36. [36] C.J. Goh, N.J. Edwards, & A.Y. Zomaya, Feedback control of minimum-time optimal control problems using neural networks, Journal of Optimal Control Applications and Methods, 14 (1), 1993, 1–16.

Important Links:

Go Back