R. Gomm, V. Bhaskar, and S. Cetinkunt
[1] S. Singh, State of the art in automation of earthmoving, ASCE Journal of Aerospace Engineering, 10 (7), 2002. [2] J.C. Latombe, Robot motion planning (Norwell, MA: Kluwer Academic Publishers, 1991). [3] O. Khatib, Real-time obstacle avoidance for manipulators and mobile robot, International Journal of Robotic Research, 5 (1), 1986, 90–98. [4] E. Rimon & D.E. Kodischeck, Exact robot navigation using artificial potential functions, IEEE Transaction on Robotics and Automation, 8 (5), 1992, 501–518. [5] D.E. Kodischek, Exact robot navigation by means of potential functions: Some topological considerations, Proc. of the IEEE Int. Conf. on Robotics and Automation, New York, 1987, 1–6. [6] J. Barraquand & J.-C. Latombe, Robot motion planning: Adistrubuted representation approach, Department of ComputerScience, Stanford University, STAN-CS-89-1257, Stanford, CA, 1989. [7] R. Chatila, Path planning and environmental learning in a mobile robot system, Proc. of the European Conf. on Artificial Intelligence, Osray, France, 1982. [8] L. Gouzenes, Strategies for solving collision-free trajectories problems for mobile and manipulator robots, International Journal of Robotics Research, 3(4), 1984, 51–65. [9] N.J. Nilsson, A mobile automaton: An application of artificial intelligence techniques, Proc. of the 1st Int. Joint Conf. on Artificial Intelligence, Washington, USA, 1969, 509–520. [10] C. O’D´unlaing, M. Sharir, & C.K. Yap, Retraction: A new approach to motion-planning, ACM Symposium on Theory ofComputing, Boston, MA, 1983, 207–220. [11] P.C. Chen & Y.K. Hwang, SANDROS: A motion planner withperformance proportional to task difficulty, IEEE International Conference on Robotics and Automation, 3, 1992, 2346–2353. [12] K. Kondo, Motion planning with six degrees of freedom by multistrategic bidirectional heuristic free-space enumeration, IEEE Transaction on Robotics and Automation, 7(3), 1991, 267–277. [13] T. Lozano-Perez, A simple motion-planning algorithm for general robot manipulators, IEEE Journal of Robotics and Automation, RA-3 (3), 1987, 224–238. [14] J. Barraquand, L.E. Kavraki, J.-C. Latombe, T.Y. Li, R. Motwani, & P. Raghavan, A random scheme for path planning, Int. Journal of Robotics Research, 16(6), 1997, 759–774. [15] L.E. Kavraki, P. ˇSvestka, J.-C. Latombe, & M.H. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Transaction on Robotics and Automation, 12(4), 1996, 566–580. [16] L.E. Kavraki, M.N. Kolountzakis, & J.-C. Latombe, Analysis of probabilistic roadmaps for path planning, IEEE Transaction on Robotics and Automation, 14, 1998, 166–171. [17] S.M. LaValle, Rapidly-exploring random trees: A new tool for path planning, Computer Science Department, Iowa State University, http://msl.cs.uiuc.edu/rrt/papers/Lav98c.ps.gz, 1998. [18] J.J. Kuffner & S.M. LaValle, RRT-connect: An efficient approach to single-query path planning, Proc. of the 2000 IEEE Transaction on Robotics and Automation, San Francisco, CA, 2000, 995–1001. [19] R. Gomm, S. Cetinkunt, I. Gharsalli, V. Bhaskar, & Y. Zhu, Method for automatically planning a collision free motion path of the blade mechanism of a motor grader, US Patent Application, 2006 (under review). [20] B. Faverjon, Obstacle avoidance using an octree in the configuration space of a manipulator, IEEE International Conference on Robotics and Automation, 1, 1984, 504–512. [21] P.C. Chen & Y.K. Hwang, SANDROS: A dynamic graphsearch algorithm for motion planning, IEEE Transactions onRobotics and Automation, 14 (3), 1998, 390–403. [22] H. Choset, K. Lynch, S. Hutchison, G. Kantor, W. Burgard, L. Kavraki, & S. Thrun, Principles of robot motion (Cambridge, MA: The MIT Press, 2005).
Important Links:
Go Back