D.J. Giblin, Y. Liu, and K. Kazerounian
[1] R. Paul & B. Shimano, Compliance and control, Joint Auto-matic Control Conference, San Francisco, CA, 1976. [2] M.T. Mason, Compliance and force control for computer-controlled manipulators, IEEE Transactions on Systems, Manand Cybernetics, SMC-11 (6), 1981, 418–432. [3] M.H. Raibert & J.J. Craig, Hybrid position/force control ofmanipulators, Journal of Dynamic Systems, Measurement andControl, 102, 1981, 126–133. [4] H. Zhang & R.P. Paul, Hybrid control of robotic manipulators,IEEE International Conference on Robotics and Automation,Saint Louis, MO, 1985. [5] J. Liu & S. Chen, Robust hybrid control of constrainted robotmanipulators via decomposed equations, Journal of Intelligentand Robotic Systems, 23, 1998, 45–70. doi:10.1023/A:1008007011294 [6] J. De Schutter & J. Van Brussel, Compliant robot motion II. Acontrol approach based on external control loops, InternationalJournal of Robotics Research, 7 (4), 1988, 18–33. doi:10.1177/027836498800700402 [7] J. Duffy, The fallacy of modern hybrid control theory thatis based on "orthogonal complements of twist and wrenchspaces, Journal of Robotic Systems, 7, 1990, 139–144. doi:10.1002/rob.4620070202 [8] M.H. Zhang, Kinematic stability of robot manipulators underforce control, IEEE International Conference on Robotics andAutomation, Scottsdale, AZ, 1989. [9] W.D. Fisher & S.M. Mujtaba, Hybrid position/force control: acorrect formulation, Measurement and Manufacturing SystemsLaboratory, Hewlett-Packard Company, Cot, 1991.53 [10] O. Khatib, R. Featherstone, & S. Thiebaut, A general contactmodel for dynamically decoupled force/motion control, IEEEInternational Conf. on Robotics and Automation, Detroit, MI,1999. [11] H. Lipkin & J. Duffy, Hybrid twist and wrench control for arobotic manipulator, ASME Journal of Mechanisms, Trans-missions, and Automation in Design, 110, 1988, 138–144. [12] M. Griffis & J. Duffy, Kinestatic control theory: a noveltheory for simultaneously regulating force and dis-placement, ASME Journal of Mechanical Design, 113, 1991,508–515. [13] N. Hogan, Impedance control: an approach to manipulation:part I-theory. Journal of Dynamic Systems, Measurement andControl, 107, 1985, 1–7. [14] N. Hogan, Impedance control: an approach to manipulation:part II-implementation. Journal of Dynamic Systems, Mea-surement and Control, 107, 1985, 8–16. [15] N. Hogan, Impedance control: an approach to manipulation:part III-application. Journal of Dynamic Systems, Measure-ment and Control, 107, 1985, 17–24. [16] J. Maples & J. Becker, Experiments in force control of roboticmanipulators, Proc. of IEEE International Conf. on Roboticsand Automation, San Francisco, CA, 1986. [17] H. Kazerooni, Robust, non-linear impedance control for robotmanipulators, Proc. of the IEEE International Conf. onRobotics and Automation, Raleigh, NC, 1987.Appendix ASimulated PUMA PropertiesLink 1 2 3 4 5 6Body vector 0 17 0 0 0 0(bx,by,bz) 10 0 0 0 0 00 0 −17 0 0 −5Joint to CG 0 8 0 0 0 0(dx,dy,dz) 5 2 0 0 −1 00 0 −9 −1 0 −3Joint axis 0 0 0 0 0 0(ux,uy,uz) 0 1 1 0 −1 01 0 0 1 0 −1Weight 10 16 12 1 1 6Moment of inertia 0.230 0.069 1.405 0.001 0.001 0.069(Ixx,Iyy,Izz) 0.005 1.453 1.585 0.001 0.0001 0.0690.230 1.394 0.034 0.0001 0.001 0.01Units of length are given in inches; weight in lbs; and moment of inertiain lbmin2.Appendix BSimulation DetailsRp Keq Kx, Ky, Kz Hybrid control Target trackingKpp Kpi Kpd Kfp Kfi Kfd C1 C2 Kfp Kfi KfdBaseline case 0.85 1e−3 12, 12, 3 8e4 6e5 80 80 1e3 0.05 2e3 10 80 1e3 0.5Stiffer mounting 0.85 1e−3 36, 36, 9 8e4 6e5 50 80 1e3 0.05 2e3 10 80 1e3 0.5Stiffer material 0.85 4e−3 12, 12, 3 8e4 6e5 80 80 1e3 0.05 2e3 10 80 1e3 0.5Larger peg radius 0.95 1e−3 12, 12, 3 6e4 6e5 50 80 1e3 0.05 2e3 10 80 1e3 0.5Rp is the radius of the peg; Keq is the equivalent mesh stiffness from PISE [25]; Kx, Ky and Kz are the springstiffnesses of the plate mounting in each corresponding direction; Kp(p)(i)(d) are hybrid position controller gains;Kf(p)(i)(d) are force controller gains; C1 and C2 are the attractive force function parameters. [18] J.T. Wen & S. Murphy, Stability analysis of position and forcecontrol for robot arms, IEEE Transactions on Automation andControl, 36, 1991, 365–371. doi:10.1109/9.73573 [19] B. Waibel & E. Kazerooni, Theory and experiment on thestability of robot compliance control, IEEE Transactions onRobotics and Automation, 7, Raleigh, NC, 1991, 95–104. doi:10.1109/70.68073 [20] I.D. Walker, The use of kinematic redundancy in reducingimpact and contact effects in manipulation. Proc. of the IEEEInternational Conf. on Robotics and Automation, Cincinnati,OH, 1990. [21] D. Giblin, M. Zongliang, Z. Gan, & K. Kazerounian, Targettracking manipulation theories for combined force and positioncontrol in open and closed loop manipulators, ASME Journalof Mechanical Design, 129 (3), 2007. doi:10.1115/1.2406104 [22] K. Kazerounian & K.C. Gupta, A target tracking manipula-tion theory for robots. International Journal of Robotics andAutomation, 1 (3), 1986. [23] J.R. Westlake, A hand book of numerical matrix inversion andsolution of linear equations (New York: Wiley Inc, 1968). [25]; Kx, Ky and Kz are the springstiffnesses of the plate mounting in each corresponding direction; Kp(p)(i)(d) are hybrid position controller gains;Kf(p)(i)(d) are force controller gains; C1 and C2 are the attractive force function parameters.[18] J.T. Wen & S. Murphy, Stability analysis of position and forcecontrol for robot arms, IEEE Transactions on Automation andControl, 36, 1991, 365–371.[19] B. Waibel & E. Kazerooni, Theory and experiment on thestability of robot compliance control, IEEE Transactions onRobotics and Automation, 7, Raleigh, NC, 1991, 95–104.[20] I.D. Walker, The use of kinematic redundancy in reducingimpact and contact effects in manipulation. Proc. of the IEEEInternational Conf. on Robotics and Automation, Cincinnati,OH, 1990.[21] D. Giblin, M. Zongliang, Z. Gan, & K. Kazerounian, Targettracking manipulation theories for combined force and positioncontrol in open and closed loop manipulators, ASME Journalof Mechanical Design, 129 (3), 2007.[22] K. Kazerounian & K.C. Gupta, A target tracking manipula-tion theory for robots. International Journal of Robotics andAutomation, 1 (3), 1986.[23] J.R. Westlake, A hand book of numerical matrix inversion andsolution of linear equations (New York: Wiley Inc, 1968).[24] W.H. Press, S.A. Teukolsky, W.T. Vetterling, & B.P. Flannery,Numerical recipes in C (Cambridge, UK: Cambridge UniversityPress, 1992).[25] M. Pimsarn & K. Kazerounian, Pseudo-interference stiffnessestimation, a highly efficient numerical method for force eval-uation in contact problems, Engineering with Computers, 19,2003, 85–91.54
Important Links:
Go Back