D. Isobe and A. Kato
[1] Y. Nakamura & M. Ghodoussi, Dynamics computation ofclosed-link robot mechanisms with nonredundant and redun-dant actuators, IEEE Trans. on Robotics and Automation,5(3), 1989, 294–302. doi:10.1109/70.34765 [2] K. Sugimoto, Dynamic analysis of closed loop mechanismson the basis vectors of passive joint axes, Journal of RoboticSystems, 20(8), 2003, 501–508. doi:10.1002/rob.10100 [3] D. Isobe, H. Takeuchi, & T. Ueda, A finite-element approachto control link mechanisms: Its concept and basic simulation,Proc. Int. Conf. on Computational Engineering Science 2000:Advances in Computational Engineering and Sciences, LosAngeles, 2000, 1648–1653. [4] D. Isobe, D. Imaizumi, Y. Chikugo, & S. Sato, A parallelsolution scheme for inverse dynamics and its application infeed-forward control of link mechanisms, Journal of Roboticsand Mechatronics, 15(1), 2003, 1–7. [5] D. Isobe, A unified solution scheme for inverse dynamics,Advanced Robotics, 18(9), 2004, 859–880.38 doi:10.1163/1568553042225778 [6] D. Isobe, A. Yagi, & S. Sato, General-purpose expression ofstructural connectivity in the parallel solution scheme andits application, JSME International Journal Series C, 49(3),2006, 789–798. doi:10.1299/jsmec.49.789 [7] W.H. Sunada & S. Dubowsky, On the dynamic analysis andbehavior of industrial robotic manipulators with elastic mem-bers, Trans. ASME, Journal of Mechanisms, Transmissions,and Automation in Design, 105, 1983, 42–51. [8] E. Bayo, A finite-element approach to control the end-pointmotion of a single-link flexible robot, Journal of RoboticSystems, 4(1), 1987, 63–75. doi:10.1002/rob.4620040106 [9] A.A. Shabana, Dynamics of flexible bodies using generalizedNewton-Euler equations, Trans. ASME, Journal of DynamicSystems, Measurement, and Control, 112, 1990, 496–503. [10] H. Asada, Z.D. Ma, & H. Tokumaru, Inverse dynamics offlexible robot arms: Modeling and computation for trajec-tory control, Trans. ASME, Journal of Dynamic Systems,Measurement, and Control, 112, 1990, 177–185. [11] S. Cetinkunt & W.L. Yu, Closed loop behavior of a feedbackcontrolled flexible arm: A comparative study, InternationalJournal of Robotics Research, 10(3), 1991, 263–275. doi:10.1177/027836499101000307 [12] A.P. Tzes & S. Yurkovich, Application and comparison ofon-line identification methods for flexible manipulator control,International Journal of Robotics Research, 10(5), 1991, 515–527. doi:10.1177/027836499101000507 [13] R.J. Theodore & A. Ghosal, Comparison of the assumed modesand finite element models for flexible multilink manipulators,International Journal of Robotics Research, 14(2), 1995, 91–111. doi:10.1177/027836499501400201 [14] D. Hui, S. Fuchun, & S. Zengqi, Observer-based adaptivecontroller design of flexible manipulators using time-delay neu-rofuzzy networks, Journal of Intelligent and Robotic Systems,34(4), 2002, 453–456. doi:10.1023/A:1019629321735 [15] B. Subudhi & A.S. Morris, Dynamic modelling, simulation andcontrol of a manipulator with flexible links and joints, Roboticsand Autonomous Systems, 41(4), 2002, 257–270. [16] R.J. Theodore & A. Ghosal, Robust control of multilink flexiblemanipulators, Mechanism and Machine Theory, 38(4), 2003,367–377. doi:10.1016/S0094-114X(02)00125-8 [17] X. Wang & J.K. Mills, FEM dynamic model for active vibrationcontrol of flexible linkages and its application to a planarparallel manipulator, Applied Acoustics, 66(10), 2005, 1151–1161. doi:10.1016/j.apacoust.2005.02.009 [18] V. Feliu, E. Pereira, I.M. D´ıaz, & P. Roncero, Feedforwardcontrol of multimode single-link flexible manipulators basedon an optimal mechanical design, Robotics and AutonomousSystems, 54(8), 2006, 651–666. doi:10.1016/j.robot.2006.02.012 [19] K.J. Bathe, Finite element procedures (Englewood Cliffs, NJ:Prentice-Hall, 1996).
Important Links:
Go Back