An Approach to Solving for Multi-Objective Optimization Problem with Application to Linear Motor Control Design

C.-L. Lin and H.-Y. Jan


  1. [1] D.E. Walker & D.B. Ridgely, Reduced order mixed H/H2 optimization with a singular H constraint, Proc. American Control, Baltimore,MD, 1994, 11281132.
  2. [2] R.H.C. Takahashi, P.L.D. Peres, & P.A.V. Ferreira, H/H2 guaranteed cost PID design or uncertain systems: A multiobjective approach, Proc. IEEE Int. Symp. on Computer-Aided Control System Design, Dearborn, MI, 1996, 315320.
  3. [3] W. Zidong, H. Zeng, & H. Unbehauen, A novel approach to H/H2 robotic control with state estimation feedback, Proc. IEEE Int. Conf. on Control Applications, Trieste, Italy, 1998, 751755.
  4. [4] S.K. Yoon, G.H. Woong, & Y.K. Tae, An intelligent missile autopilot using genetic algorithm, Proc. IEEE Int. Conf. on Computational Cybernetics and Simulation, Orlando, FL, 1997, 19541959. doi:10.1109/ICSMC.1997.638363
  5. [5] B.S. Chen, Y.M. Cheng, & C.H. Lee, A genetic approach to mixed H/H2 optimal PID control, IEEE Control Systems Magazine, 15, 1995, 5160. doi:10.1109/37.466262
  6. [6] E. Rijanto, Quasi mixed H/H2 controller for a high precision positioning device, Proc. IEEE Int. Workshop on Advanced Motion Control, Nagoya, Japan, 2000, 335338. doi:10.1109/AMC.2000.862886
  7. [7] T. Back, Evolutionary algorithms in theory and practice (New York: Oxford, 1996).
  8. [8] M. Gen & R. Cheng, A survey of penalty techniques in genetic algorithms, Proc. IEEE Int. Conf. on Evolutionary Computation, Nagoya, Japan, 1996, 804809. doi:10.1109/ICEC.1996.542704
  9. [9] Z. Michalewicz, Genetic algorithms + data structure = evolution programs (New York: Springer-Verlag, 1996).
  10. [10] H.P. Schwefel, Evolution and optimum seeking (New York: Wiley, 1995).
  11. [11] M.K. Kim, C.G. Lee, & H.K. Jung,. Multiobjective optimal design of three-phase induction motor using improved evolution strategy, IEEE Trans. Magnetics, 34, 1998, 29802983. doi:10.1109/20.717696
  12. [12] J.H. Park & Y.K. Choi, An on-line PID control scheme for unknown nonlinear dynamic systems using evolution strategy, Proc. of IEEE Int. Conf. on Evolutionary Computation, Nagoya, Japan, 1996, 759763. doi:10.1109/ICEC.1996.542698
  13. [13] L. Costa & P. Oliveira, Evolutionary algorithms approach to the solution of mixed integer non-linear programming problems, Elsevier Science Computers and Chemical Engineering, 25, 2001, 257266. doi:10.1016/S0098-1354(00)00653-0
  14. [14] I. Boldea & S.A. Nasar, Linear electric actuators and generators (London: Cambridge University Press, 1997).
  15. [15] N. Hemati, J.S. Thorp, & M.C. Leu, Robust nonlinear control of brushless DC motors for direct-drive robotic applications. IEEE Trans. Industrial Electronics, 37, 1990, 460468. doi:10.1109/41.103449
  16. [16] P.M. Pelczewski & U.H. Kunz, The optimal control of a constrained drive system with brushless DC motor, IEEE Trans. Industrial Electronics, 37, 1990, 342348. doi:10.1109/41.103428
  17. [17] F.J. Lin, K.K. Shyu, & Y.S. Lin, Variable structure adaptive control for PM synchronous servo motor drive, Proc. IEE B: Electric Power Applications, 146, 1999, 173185. doi:10.1049/ip-epa:19990113
  18. [18] E. Cerruto, A. Consoli, A. Raciti, & A. Testa, A robust adaptive controller for PM motor drives in robotic applications, IEEE Trans. Power Electronics, 10, 1995, 6271. doi:10.1109/63.368459
  19. [19] M. Green & D.J.N. Limebeer, Linear robust control (New York: Prentice-Hall, 1995).
  20. [20] J.M. Maciejowski, Multivariable feedback design (New York: Addison-Wesley, 1989).
  21. [21] J. Liu, R.T. Haftka, M.A. Akgin, & A. Todorki, Permutation genetic algorithm for stacking sequence design of composite laminates, Computer Methods in Applied Mechanics and Engineering, 186, 2000, 24. doi:10.1016/S0045-7825(99)90391-2
  22. [22] K. Deb, Optimization for engineering design: Algorithms and examples (New Delhi: Prentice-Hall, 1995).
  23. [23] D. Powell & M.M. Skolnick, Using genetic algorithms in engineering design optimization with nonlinear constraints, Proc. 5th Int. Conf. on Genetic Algorithms, San Mateo, CA, 1993, 424430.
  24. [24] G.T. Otten, J.A. de Vries, J. van Amerongen, A.M. Rankers, & E.W. Gaal, Linear motor motion control using a learning feedforward controller, IEEE Trans. on Mechatronics, 2, 1997, doi:10.1109/3516.622970
  25. [25] J.P. William, Modeling, analysis, and control of dynamic systems (New York: John Wiley & Sons, 2000).
  26. [26] L.L. William, Tuning proportional-integral-derivative controller for integrator/dead time processes, Industrial Engineering Chemical Research, 35, 1996, 3480-3483. doi:10.1021/ie9600699
  27. [27] L.L. Michael & L.L. William, Essentials of process control (New York: McGraw Hill, 1997).

Important Links:

Go Back