KINEMATIC ANALYSIS OF TWO DEGREES-OF-FREEDOM PLANAR SEVEN-BAR MECHANISMS WITH PRISMATIC PAIRS, 349-361.

Mingquan Yang, JunWang, and Yizhe Huang

References

  1. [1] K.-L. Ting, Five-bar Grashof criteria, ASME Journal ofMechanisms, Transmissions, and Automation in Design,108(4), 1986, 533–537.
  2. [2] K.-L. Ting, Mobility criteria of single-loop N-bar linkages,Journal of Mechanisms, Transmissions, and Automation inDesign, 111(4), 1989, 504–507.
  3. [3] K.-L. Ting and Y.-W. Liu, Rotatability laws for N-bar kinematicchains and their proof, Journal of Mechanism Design, 113(1),1991, 32–39.
  4. [4] Y.-W. Liu and K.-L. Ting, On the rotatability of sphericalN-bar chains, Journal of Mechanical Design, 116(3), 1994,920–923.
  5. [5] K.-L. Ting, On the input joint rotation space and mobility oflinkages, Journal of Mechanical Design, 130(9), 2008, 1–12.
  6. [6] K.-L. Ting and X. Dou, Classification and branch identificationof Stephenson six-bar chains, Mechanism and Machine Theory,31(3), 1996, 283–295.
  7. [7] K.-L. Ting, C. Xue, J. Wang, and K.R. Currie, Stretch rotationand complete mobility identification of Watt six-bar linkages,Mechanism and Machine Theory, 44(10), 2009, 1877–1886.
  8. [8] K.-L. Ting, J. Wang, C. Xue, and K.R. Currie, Full rotatabilityand singularity of six-bar and geared five-bar linkages, Journalof Mechanisms and Robotics-Transactions of the ASME, 2(1),2010, 298–300.
  9. [9] X. Dou and K.-L. Ting, Module approach for branch analysisof multiloop linkages/manipulators, Mechanism and MachineTheory, 33(5), 1998, 565–582.
  10. [10] J. Wang, K.-L. Ting, and C. Xue, Discriminant method forthe mobility identification of single degree-of-freedom double-loop linkages, Mechanism and Machine Theory, 4(5), 2010,740–755.
  11. [11] J. Wang, K.-L. Ting, and D. Zhao, Equivalent linkages and deadcenter positions of planar single-degree-of-freedom complexlinkages, Journal of Mechanisms and Robotics-Transactions ofthe ASME, 7(4), 2015, 044501.
  12. [12] J. Wang and K.-L. Ting, Mobility identification of a group ofsingle degree-of-freedom eight-bar linkages, Proc. of the ASME2010 International Design Engineering Technical Conf. andComputers and Information in Engineering Conf., Montreal,QC, 2010, 1739–1749.
  13. [13] M. M. Plecnik and J.M. McCarthy, Kinematic synthesis ofStephenson III six-bar function generators, Mechanism andMachine Theory, 97(9), 2016, 112–126.
  14. [14] J. Wang, K.-L. Ting, C. Xue, and K.R. Currie, Singularityand sub-branch identification of two-DOF seven-bar parallelmanipulators, Proc. of the ASME 2009 International DesignEngineering Technical Conf. and Computers and Informationin Engineering Conf., San Diego, CA, 2009, 1139–1146.
  15. [15] J. Wang, K.-L. Ting, and C. Xue, Branch identificationof planar two-DOF seven-bar linkages, Proc. of the ASME2009 International Design Engineering Technical Conf. andComputers and Information in Engineering Conf., San Diego,CA, 2009, 1175–1182.
  16. [16] J. Wang, K.-L. Ting, Y. Gong, and H. He, Motion continuityand branch identification of two-DOF seven-bar planar parallelmanipulators and linkages, International Journal of Roboticsand Automation, 34(4), 2019, 397–409.
  17. [17] J. Wang, L. Nie, D. Zhao, J. Ren, Q. Wang, J. Sun, and K.-L.Ting, Equivalent five-bar linkages for the singularity analysisof two-DOF seven-bar linkages, Proc. of International DesignEngineering Technical Conf. and Computer and Informationin Engineering Conf., Cleveland, OH, 2017.
  18. [18] L. Nie and H, Ding, Dead center identification of two-degrees-of-freedom planar parallel manipulator using graph theoryand transmission angle, Journal of Mechanisms and Robotics-Transactions of the ASME, 12(5), 2022, 1–15.
  19. [19] J. Wang, L. Nie, Q. Wang, J. Sun, Y. You, D. Zhao, K.-L. Ting,Singularity analysis of planar multiple-DOF linkages, Proc. ofthe ASME 2014 International Design Engineering TechnicalConf. and Computers and Information in Engineering Conf.,Buffalo, NY, 2014.
  20. [20] W. Liu, J. Han, and L. Qiu, On the theory and methodologyof systematic analysis of positions, singular configurations,branches and circuits, and ranges of motion for planarcomplex linkages, Mechanism and Machine Theory, 168, 2022,104590.
  21. [21] C.L. Chan and K.-L. Ting, Rotatability of the floating linkon multi-loop planar linkages, Journal of Mechanisms andRobotics-Transactions of the ASME, 12(6), 2020, 061007.
  22. [22] Q. Zhao, J. Guo, and J. Hong, Assembly precision predictionfor planar closed-loop mechanism in view of joint clearanceand redundant constraint, Journal of Mechanical Science andTechnology, 32(7), 2018, 3395–3405.
  23. [23] J. Ding, S, Lyu, T. Da, C. Wang, and G.S. Chirikjian,Error space estimation of three degrees of freedom planarparallel mechanisms, Journal of Mechanisms and Robotics-Transactions of the ASME, 11(3), 2019, 031013.
  24. [24] D. Yao, Y. Wu, Y. Wang, and X. Xiao, Experimental validationof a control method for underactuated bipedal walking oncompliant ground, International Journal of Robotics andAutomation, 33(5), 2018, 552–558.
  25. [25] X. Lai, H. Chen, Y. Wang, Y. Yuan, and M. Wu, Trajectorytracking control with specified posture for planar four-link realunderactuated manipulator, International Journal of Roboticsand Automation, 34(2), 2019, 194–202.
  26. [26] K. Marlow, M. Isaksson, and S. Nahavandi, Motion/forcetransmission analysis of planar parallel mechanisms withclosed-loop subchains, Journal of Mechanisms and Robotics-Transactions of the ASME, 8(4), 2016, 041019.
  27. [27] N. Robson and S. Ghosh, Geometric design of planarmechanisms based on virtual guides for manipulation, Robotica,34(12), 2016, 2653–2668.
  28. [28] Z. Yang and D. Zhang, Novel planar balanced (2-RR)R parallelmanipulator adaptive for energy efficiency, Internationaljournal of Robotics and Automation, 35(6), 2020, 454–459.
  29. [29] Z. Shao, H. Li, L. Wang, Z. Zhang, R. Yao, and J. Qie,Orientation optimization of cable-driven parallel manipulatorfor cleaning the deep sea fishing ground, International Journalof Robotics and Automation, 35(5), 2020, 347–354.
  30. [30] Z. Zhan, X. Zhang, Z.C. Jian, and H.D. Zhang, Error modellingand motion reliability analysis parallel manipulator withmultiple uncertainties, Mechanism and Machine Theory, 124,2018, 55–72
  31. [31] G. Chen, Z. Zhang, L. Kong, and H. Wang, Analysis andvalidation of a flexible planar two degrees-of-freedom parallelmanipulator with structural passive compliance, Journal ofMechanisms and Robotics-Transaction of the ASME, 12(1),2020, 011011.
  32. [32] K. Li, H. Jiang, and Z. Cui, Design for solving negative stiffnessproblem of redundant planar rotational parallel mechanisms,International Journal of Robotics and Automation, 34(1), 2019,78–83.
  33. [33] G. Chen, J. Wang, and W. Hao, A new type of planartwo degrees-of-freedom remote center-of-motion mechanisminspired by the peaucellier-lipkin straight-line linkage, Journalof Mechanical Design, 141(1), 2019, 015001.
  34. [34] G.S. Soh and F.T. Ying, Motion generation of planar six- andeight-bar slider mechanisms as constrained robotic systems,Journal of Mechanisms and Robotics-Transactions of theASME, 7(3), 2015, 975–978.
  35. [35] S.M. Almestiri, A.P. Murray, D.H. Myszka, and C.W.Wampler, Singularity traces of single degree-of-freedom planarlinkages that include prismatic and revolute joints, Journal ofMechanisms and Robotics-Transactions of the ASME, 8(5),2015, 15–18.
  36. [36] Q, Zou, D. Zhang, S, Zhang, and X. Luo, Kinematic anddynamic analysis of a 3-DOF parallel mechanism, International360Journal of Mechanics and Materials in Design, 17(3), 2021,587–599.
  37. [37] S. Zarkandi, An instant center approach for isotropy analysis ofplanar parallel mechanisms, International Journal of Roboticsand Automation, 31(5), 2016, 396–401.
  38. [38] M. Helal, J, Hu, and H. Eleashy, Automatic generation of N-bar planar linkages containing sliders, Applied Sciences-Basel,11(8), 2021, 3546.
  39. [39] V. Dharanipragada and M. Chintada, Split hamming stringas an isomorphism test for one degree-of-freedom planarsimple-jointed kinematic chains containing Sliders, Journal ofMechanical Design, 138(8), 2016, 082301.
  40. [40] S.W. Kang and Y.Y. Kim, Unified topology and joint typesoptimization of general planar linkage mechanisms, Structureand Multidisciplinary of optimization, 57(5), 2018, 1955–1983.
  41. [41] J.S. Zhao, S. Wei, and J. Ji, Kinematic of a planar slider-crankin screw form, Proceedings of the Institution of MechanicalEngineers Part C-Journal of Mechanical Engineering Science,236(3), 2022, 1588–1597.
  42. [42] T. Essomba and S.N. Phu, Kinematic design of a hybrid-tripod mechanism for bone reduction surgery, Mechanics andIndustry, 21(4), 2022, 403.
  43. [43] M. Gallant and C. Gosselin, Singularities of a planar 3-RPRparallel manipulator with joint clearance, Robotica, 36(7),2018, 1098–1109.
  44. [44] C.S. Jhuang, Y.Y. Kao, and D.Z. Chen, Design of one DOFclosed-loop statically balanced planar linkage with link-collinearspring arrangement, Mechanism and Machine Theory, 130,2018, 301–312.
  45. [45] S.J. Rodr´ıguez-Gonz´alez, H.A. Su´arez-Vel´asquez, J. Jes´usCervantes-S´anchez, and J.M. Rico-Mart´ınez, A novel approachfor the rigid body guidance synthesis of planar RRPR linkages,Journal of Mechanical Science and Technology, 34(2), 2020,843–854.

Important Links:

Go Back