Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
SPATIOTEMPORAL AGGREGATION METHOD BASED ON TRAJECTORY DATA FOR LOGISTICS VEHICLE TRANSPORT MOTION ANALYSIS
Xian Meng, Lijun Wang, and Jianshuang Liu
References
[1] S. Wallace and G. L˘az˘aroiu, Predictive control algorithms,real-world connected vehicle data, and smart mobility tech-nologies in intelligent transportation planning and engineering,Contemporary Readings in Law and Social Justice, 13(2), 2021,79–92.
[2] W.C. Hu, H.T. Wu, H.H. Cho, and F.H. Tseng, Optimalroute planning system for logistics vehicles based on artificialintelligence, Journal of Internet Technology, 21(3), 2020,757–764.
[3] S. Nataraj, D. Ferone, C. Quintero-Araujo, A. Juan, and P.Festa, Consolidation centers in city logistics: A cooperativeapproach based on the location routing problem, InternationalJournal of Industrial Engineering Computations, 10(3), 2019,393–404.
[4] E. Demir, M. Hruˇsovsk´y, W. Jammernegg, and T. Woensel,Green intermodal freight transportation: Bi-objective mod-elling and analysis, International Journal of ProductionResearch, 57(19), 2019, 6162–6180.
[5] S. Dodge, S. Gao, M. Tomko, and R. Weibel, Progress incomputational movement analysis–towards movement datascience, International Journal of Geographical InformationScience, 34(12), 2020, 2395–2400.
[6] Y. Shi, D. Wang, J. Tang, M. Deng, H. Liu, and B. Liu,Detecting spatiotemporal extents of traffic congestion: Adensity-based moving object clustering approach, InternationalJournal of Geographical Information Science, 35(7), 2021,1449–1473.
[7] L. Tang, F. Yan, B. Zou, W. Li, C. Lv, and K. Wang, Trajectoryprediction for autonomous driving based on multiscale spatial-temporal graph, IET Intelligent Transport Systems, 17(2),2023, 386–399.
[8] N. Zuniga-Garcia, N.R. Juri, K.A. Perrine, and R.B.Machemehl, E-scooters in urban infrastructure: Understandingsidewalk, bike lane, and roadway usage from trajectory data,Case Studies on Transport Policy, 9(3), 2021, 983–994.
[9] A. Graser, P. Widhalm, and M. Dragaschnig, The M3 massivemovement model: A distributed incrementally updatablesolution for big movement data exploration, InternationalJournal of Geographical Information Science, 34(12), 2020,2517–2540.
[10] O. Lock, T. Bednarz, and C. Pettit, The visual analytics ofbig, open public transport data–a framework and pipeline formonitoring system performance in Greater Sydney, Big EarthData, 5(1), 2021, 134–159.
[11] M. Li, P. Tong, M. Li, Z. Jin, J. Huang, and X. Hua,Traffic flow prediction with vehicle trajectories, Proceedings ofthe AAAI Conference on Artificial Intelligence, 35(1), 2021,294–302.
[12] W. Li, S. Wang, X. Zhang, Q. Jia, and Y. Tian, Understandingintra-urban human mobility through an exploratory spa-tiotemporal analysis of bike-sharing trajectories, InternationalJournal of Geographical Information Science, 34(12), 2020,2451–2474.
[13] T. Bogaerts, A.D. Masegosa, J.S. Angarita-Zapata, E. Onievaand P. Hellinckx, A graph CNN-LSTM neural network forshort and long-term traffic forecasting based on trajectorydata, Transportation Research Part C: Emerging Technologies,112, 2020, 62–77.
[14] A. Mohamed, K. Qian, M. Elhoseiny, and C. Claudel,Social-STGCNN: A social spatio-temporal graph convolutionalneural network for human trajectory prediction, Proc. ofthe IEEE/CVF Conf. on Computer Vision and PatternRecognition, Seattle, WA, USA, 2020, 14424–14432.
[15] T. Jia, C. Cai, X. Li, X. Luo, Y. Zhang, and X. Yu,Dynamical community detection and spatiotemporal analysisin multilayer spatial interaction networks using trajectory data,International Journal of Geographical Information Science,36(9), 2022, 1719–1740.10
[16] G. Shao, Intelligent vehicle control system based on cloudcomputing and Internet of Things, Mechatronic Systems andControl, 49(4), 2021, 245–250.
[17] Z. Yaghoubi and H. Zarabadipour, Hybrid neural-networkcontrol of mobile robot system via anti-control of chaos,Mechatronic Systems and Control (formerly Control andIntelligent Systems), 48(4), 2020, 239–248.
[18] J.Sweafford Jr and F. Fahimi, A neural network model-based control method for a class of discrete-time nonlinearsystems, Mechatronic Systems and Control (formerly Controland Intelligent Systems), 49(2), 2021, 93–100.
[19] T. Zhang, W. He, J. Huang, Z. He, and J. Li, Interactive visualanalytics of moving passenger flocks using massive smart carddata, Cartography and Geographic Information Science, 49(4),2022, 354–369.
[20] T. Jia and C. Cai, Forecasting citywide short-term turningtraffic flow at intersections using an attention-based spatiotem-poral deep learning model, Transportmetrica B: TransportDynamics, 11(1), 2023, 683–705.
[21] K. Rehrl, S. Gr¨ochenig, and S. Kranzinger, Why did a vehiclestop? A methodology for detection and classification of stopsin vehicle trajectories, International Journal of GeographicalInformation Science, 34(10), 2020, 1953–1979.
[22] P. Zhao, D. Jonietz, and M. Raubal, Applying frequent-patternmining and time geography to impute gaps in smartphone-basedhuman-movement data, International Journal of GeographicalInformation Science, 35(11), 2021, 2187–2215.
[23] Y. Liang and Z. Zhao, NETTRAJ: A network-based vehicletrajectory prediction model with directional representationand spatiotemporal attention mechanisms, IEEE Transac-tions on Intelligent Transportation Systems, 23(9), 2021,14470–14481.
[24] C. Ren, L. Tang, X. Yang, and J. Long, Mapping grade-separated junctions in detail using crowdsourced trajectorydata, IEEE Transactions on Intelligent TransportationSystems, 23(6), 2021, 5552–5561.
[25] C. Lei, C. Zhao, Y. Ji, Y. Shen, and Y. Du, Identifyingand correcting the errors of vehicle trajectories from roadsidemillimetre-wave radars, IET Intelligent Transport Systems,17(2), 2023, 418–434.
[26] P. Chen, L. Wei, F. Meng, and N. Zheng, Vehicletrajectory reconstruction for signalized intersections: Ahybrid approach integrating Kalman Filtering and variationaltheory, Transportmetrica B: Transport Dynamics, 9(1), 2021,22–41.
[27] Q. Yu, Y. Luo, D. Wang, C. Chen, L. Sun, and Y. Zhang, Usinginformation entropy and a multi-layer neural network withtrajectory data to identify transportation modes, InternationalJournal of Geographical Information Science, 35(7), 2021,1346–1373.
[28] A. Hamdi, K. Shaban, A. Erradi, A. Mohamed, S.K. Rumi,and F.D. Salim, Spatiotemporal data mining: A survey onchallenges and open problems, Artificial Intelligence Review,2022, 1–48.
[29] C. Yang and Z. Pei, Long-short term spatio-temporalaggregation for trajectory prediction, IEEE Transactions onIntelligent Transportation Systems, 24(4), 2023, 4114–4126.
[30] B.C. Lin and T.C. Chan, Visualizing population mobilityfrom spatiotemporally aggregated mobile phone data via a 3Dgradient approach, Transactions in GIS, 27(1), 2023, 40–56.
[31] A.S. Maihulla, I. Yusuf, and S.I. Bala, Reliability andperformance analysis of a series-parallel system using Gumbel-Hougaard family copula, Journal of Computational andCognitive Engineering, 1(2), 2022, 74–82.
[32] M. Yang, Research on vehicle automatic driving targetperception technology based on improved MSRPN algorithm,Journal of Computational and Cognitive Engineering, 1(3),2022, 147–151.
Important Links:
Abstract
DOI:
10.2316/J.2024.201-0488
From Journal
(201) Mechatronic Systems and Control - 2025
Go Back