CONSISTENCY ANALYSIS AND SUGGESTIONS OF COLLISION MEASUREMENT IN HUMAN–ROBOT COLLABORATION SAFETY EVALUATION, 1-13.

Xiaopeng Zhu, Ke Zhang, and Xueming Hua

References

  1. [1] ISO:8373, Robots and robotic devices — vocabulary, Interna-tional Organization for Standardization, 2012.
  2. [2] L. Fu, R. Wu, and J. Zhao, The evolution andenlightenment of safety specification of cooperativerobots: ISO/TS 15066, ROBOT, 39, 2017, 150–158. DOI:10.13973/j.cnki.robot.2017.0532.
  3. [3] U. Dombrowski, T. Stefanak, and A. Reimer, Simulationof human–robot collaboration by means of power and forcelimiting, Procedia Manufacturing, 17, 2018, 134–141. DOI:10.1016/j.promfg.2018.10.028.
  4. [4] R. Zhao and D. Sidobre, A framework for human–robotinteraction in collaborative manufacturing environments,International Journal of Robotics and Automation, 34, 2019,102208. DOI: 10.2316/J.2019.206-0220.
  5. [5] P. Minyao, 2020 collaborative robot industry development bluebook: Into a new era of man-machine integration!, GaogongRobot, 2020, https://mp.weixin.qq.com/s/DsLhxDdrx3PwUlKsu OtWA (accessed Jul. 15, 2021).
  6. [6] G. Jaka, Blue book on the development of collaborative roboticsindustry, China: JAKA,GGII, 2019, 37–49.
  7. [7] J.A. Falco, J.A. Marvel, and R.J. Norcross, Collaborativerobotics: Measuring blunt force impacts on humans, Proc. of the7th International Conf. on the Safety of Industrial AutomatedSystems, Montreal, QC, 2012.
  8. [8] S. Haddadin, A. Albu-Sch¨affer, and G. Hirzinger, Requirementsfor safe robots: Measurements, analysis and new insights,The International Journal of Robotics Research, 28, 2009,1507–1527. DOI: 10.1177/0278364909343970.
  9. [9] J. Guiochet, M. Machin, and H. Waeselynck, Safety-criticaladvanced robots: A survey, Robotics and Autonomous Systems,94, 2017, 43–52. DOI: 10.1016/j.robot.2017.04.004.
  10. [10] L. Gualtieri, I. Palomba, E.J. Wehrle, and R. Vidoni, Theopportunities and challenges of SME manufacturing automa-tion: Safety and ergonomics in human–robot collaboration, inD.T. Matt, V. Modr´ak and H. Zsifkovits (eds.), Industry 4.0for SMES: Challenges, opportunities and requirements (Cham:Springer International Publishing, 2020), 105–144.
  11. [11] G. Industrieelektronik, The cobosafe force-pressure measure-ment system can check required thresold values for workplaceswith human–robot collaboration, GTE IndustrieelektronikGmbH, 2022, https://www.gte.de/en/messtechnik/kraft-druckmesssystem-cobosafe (accessed Sep. 10, 2022).
  12. [12] P. GmbH, Collision measurement set PRMS for human–robot collaboration, Pilz GmbH & Co. KG, 2018,https://www.pilz.com/en-INT/products/robotics/prms/prms(accessed Dec. 4, 2022).
  13. [13] Y.H. Li Zhihai, W. Zhenwei, and W. Hengzhi, A collisionsafety test system and test method for cooperative robots.CN201910484759.4, filed 23 August 2019 2019, and issued.
  14. [14] J. Lixing, M. Fansheng, and D. Xingguang, Safetydetection system of collaborative robot based on labview,Instrument Technology and Sensors, 2021, 54–57, 66. DOI:10.3969/j.issn.1002-1841.2021.03.012, https://d.wanfangdata.com.cn/periodical/ChlQZXJpb2RpY2FsQ0hJTmV3UzIwMjEwNTIxEhF5YmpzeWNncTIwMjEwMzAxMhoIaWU4Y3h3Zmw%3D.11
  15. [15] N.G. Dagalakis, J.-M. Yoo, and T. Oeste, Human–robot col-laboration dynamic impact testing and calibration instrumentfor disposable robot safety artifacts, Industrial Robot: AnInternational Journal, 43, 2016, 328–337. DOI: 10.1108/IR-06-2015-0125.
  16. [16] C. Fischer, M. Steiner, M. Neuhold, M. Papa, A. Markis, andS. Schlund, An investigation of the measurement of transientcontacts in human–robot interaction, Advances in Service andIndustrial Robotics, Cham, 2022, 547–555.
  17. [17] ISO/TS:15066, Robots and robotic devices collaborative robots.ISO/TS 15066, International Organization for Standardization,2016.
  18. [18] M. Melia, B. Geissler, J. K¨onig, H. J. Ottersbach, M. Umbreit,S. Letzel, and A. Muttray, Pressure pain thresholds: Subjectfactors and the meaning of peak pressures, European Journalof Pain, 23, 2019, 167–182. DOI: 10.1002/ejp.1298.
  19. [19] M.Y. Park, D. Han, J.H. Lim, M.K. Shin, Y.R. Han, D.H.Kim, S. Rhim, and K.S. Kim, Assessment of pressure painthresholds in collisions with collaborative robots, PLoS One,14(5), 2019, e0215890.
  20. [20] R.G. Topazian, Pain thresholds and factors which modifythem, Oral Surgery, Oral Medicine, Oral Pathology, 10, 1957,1192–1203. DOI: 10.1016/0030-4220(57)90076-2.
  21. [21] ISO/FDIS:10218-2, Robotics — safety requirements — part 2:Industrial robot systems, robot applications and robot cells,International Organization for Standardization, 2021.
  22. [22] RIA, Industrial robots and robot systems—safetyrequirements—testing methods for power & force limitedcollaborative applications, Technical Report RIA TR R15.806-2018, American National Standards Institute, Washington,D.C., 2018.
  23. [23] HSE, Collision and injury criteria when working withcollaborative robots, (Derbyshire: Health and Safety Executive,2012).
  24. [24] ISO/IEC:17025, General requirements for the competence oftesting and calibration laboratories, International Organizationfor Standardization, 2017.
  25. [25] ISO:12100, Safety of machinery — general principles fordesign — risk assessment and risk reduction, InternationalOrganization for Standardization, 2010.
  26. [26] 14121-2:2012, I. T. Safety of machinery - risk assessment - part2: Practical guidance and examples of methods, 2013.
  27. [27] T.P. Huck, N. M¨unch, L. Hornung, C. Ledermann, and C. Wurll,Risk assessment tools for industrial human–robot collaboration:Novel approaches and practical needs, Safety Science, 141,2021, 105288. DOI: 10.1016/j.ssci.2021.105288.
  28. [28] M. Mihelj, T. Bajd, A. Ude, J. Lenarˇciˇc, A. Stanovnik, M.Munih, J. Rejc, and S. ˇSlajpah, Collaborative robots. in M.Mihelj, T. Bajd, A. Ude, J. Lenarˇciˇc, A. Stanovnik, M. Munih,J. Rejc, and S. ˇSlajpah (eds.), Robotics (Cham: SpringerInternational Publishing, 2019), 173–187.
  29. [29] C.-N. Cho, J.-H. Kim, Y.-L. Kim, J.-B. Song, and J.-H. Kyung,Collision detection algorithm to distinguish between intendedcontact and unexpected collision, Advanced Robotics, 26, 2012,1825–1840. DOI: 10.1080/01691864.2012.685259.
  30. [30] H. Bolandi and A.F. Ehyaei, Position/force control ofa dual cooperative manipulator system based on asingularly perturbed dynamic model, International Journalof Robotics and Automation, 27, 2012, 76–91. DOI:10.2316/Journal.206.2012.1.206-3516.
  31. [31] Y.Q. Yu and C.X. Zhang, Dynamic modelling for cooperationsystem of flexible robots manipulating a constrained object,International Journal of Robotics and Automation, 23, 2008,1–8. DOI: 10.2316/Journal.206.2008.1.206-2830.
  32. [32] N. Cobanoglu, B.M. Yilmaz, E. Tatlicioglu, and E. Zergeroglu,Repetitive control of robotic manipulators in operational space:A neural network-based approach, International Journal ofRobotics and Automation, 37, 2022, DOI: 10.2316/J.2022.206-0654.
  33. [33] A. Schlotzhauer, L. Kaiser, J. Wachter, M. Brandst¨otter, and M.Hofbaur, On the trustability of the safety measures of collabo-rative robots: 2D collision-force-map of a sensitive manipulatorfor safe HRC, Proc. 2019 IEEE 15th International Conf. onAutomation Science and Engineering (CASE), Vancouver, BC,2019, 1676–1683. DOI: 10.1109/COASE.2019.8842991.
  34. [34] A. Scibilia, M. Valori, N. Pedrocchi, I. Fassi, S. Herbster,R. Behrens, J. Saenz, A. Magisson, C. Bidard, M. K¨uhnrich,A.B. Lassen, and K. Nielsen, Analysis of interlaboratorysafety related tests in power and force limited collabo-rative robots, IEEE Access, 9, 2021, 80873–80882. DOI:10.1109/ACCESS.2021.3085109.
  35. [35] R.J. Kirschner, N. Mansfeld, S. Abdolshah, and S. Haddadin,Experimental analysis of impact forces in constrained collisionsaccording to ISO/TS 15066, Proc. 2021 IEEE InternationalConf. on Intelligence and Safety for Robotics (ISR), Tokoname,2021, 1–5. DOI: 10.1109/ISR50024.2021.9419494.
  36. [36] ISO:9283, Manipulating industrial robots — performancecriteria and related test methods, International Organizationfor Standardization, 1998.
  37. [37] R.J. Kirschner, N. Mansfeld, S. Abdolshah, and S. Haddadin,ISO/TS 15066: How different interpretations affect riskassessment, 2022, arXiv:2203.02706.
  38. [38] DGUV, Project no. Ff-fp 0317: Experimental assessmentof pain thresholds in major parts of the human body dueto mechanical exposure in human–machine interface, 2014,https://www.dguv.de/ifa/forschung/projektverzeichnis/ff-fp0317-2.jsp.
  39. [39] D.G. Unfallversicherung, BG/BGIA risk assessment recommen-dations according to machinery directive design of workplaceswith collaborative robots. October 2009 edition, revisedFebruary 2011.
  40. [40] Y. Yamada, K. Suita, H. Ikeda, N. Sugimoto, H. Miura,and H. Nakamura, Evaluation of pain tolerance basedon a biomechanical method for human-robot coexistence,Transactions of the Japan Society of Mechanical Engineers,Series C, 63, 1997, 281–2819.
  41. [41] ISO10218-1:2011, Robots and robotic devices — safetyrequirements for industrial robots — part 1: Robots, ISO, 2011.
  42. [42] I. Daniyan, K. Mpofu, F. Ale, and M. Oyesola, Design andsimulation of a dual-arm robot for manufacturing operationsin the railcar industry, International Journal of Robotics andAutomation, 36, 2021.
  43. [43] IEC, Safety in the future.
  44. [44] UR, Cobots offer game changing benefits, 2023,https://www.universal-robots.com/uk/collaborative-robots-cobots-benefits/ (accessed May 28, 2023).
  45. [45] V. Gopinath and K. Johansen, Risk assessment process for col-laborative assembly – a job safety analysis approach, ProcediaCIRP, 44, 2016, 199–203. DOI: 10.1016/j.procir.2016.02.334.
  46. [46] M. Askarpour, D. Mandrioli, M. Rossi, and F. Vicentini,SAFER-HRC: Safety analysis through formal verification inhuman-robot collaboration, Proc. Computer Safety, Reliability,and Security, Cham, 2016, 283–295.
  47. [47] S.-D. Lee, B.-S. Kim, and J.-B. Song, Human–robot collisionmodel with effective mass and manipulability for designof a spatial manipulator, Advanced Robotics, 27, 2013,189–198. DOI: 10.1080/01691864.2012.754076. https://www.tandfonline.com/doi/full/10.1080/01691864.2012.754076.
  48. [48] R.J. Kirschner, N. Mansfeld, G.G. Pena, S. Abdolshah,and S. Haddadin, Notion on the correct use of the roboteffective mass in the safety context and comments on ISO/TS15066, Proc. 2021 IEEE International Conf. on Intelligenceand Safety for Robotics (ISR), Tokoname, 2021, 6–9. DOI:10.1109/ISR50024.2021.9419495.
  49. [49] HEXAGON, Leica absolute tracker at960, HEXAGON,2022, https://hexagon.com/products/leica-absolute-tracker-at960?accordId=5EFAEE4F75B3447290896B712CEEE29E(accessed Nov. 20, 2022).
  50. [50] ISO:13855, Safety of machinery — positioning of safeguardswith respect to the approach speeds of parts of the humanbody, International Organization for Standardization, 2010.
  51. [51] Instruction, O. 29 CFR 1910.217 mechanical power presses,clarifications, STD 01-12-021, Occupational Safety and HealthAdministration, 1978.12

Important Links:

Go Back