PINE WILT DISEASE TREE RECOGNITION ON UAV IMAGES VIA SAMPLING THRESHOLD INTERVAL WEIGHTING METHOD AND DOUBLE-HEAD DETECTION, 68-76.

Lu Wang, Dong Ren, Xiaoran Tian, Yunjie Zhang, and Deao Hu

References

  1. [1] M.M. Mota and P.R. Vieira, Pine wilt disease: A worldwidethreat to forest ecosystems, Nematology, 2(11), 2009,315–316.
  2. [2] X.J. Lu, J. Wang, and W.G. Yu, Studying on monitoringforest pests and diseases by unmanned aerial vehicle,Hubei Forestry Science and Technology, 45(4), 2016, 30–33.(in Chinese).
  3. [3] H. Tao, C.J. Li, and C.C. Xie, Recognition of red-attack pinetrees from UAV imagery based on the HSV threshold method,Journal of Nanjing Forestry University (Natural Sciences),43(3), 2019, 99–106. (in Chinese)
  4. [4] X.L. Liu, D.X. Cheng, and T. Li, Preliminary studyon automatic monitoring trees infected by pine woodnematode with high resolution images from unmannedaerial vehicle, Forest Pest and Disease, 37(5), 2018, 16–21.(in Chinese)
  5. [5] J. Wan, H. Xi, J. Zhou, Z.H. Lai, W. Pedrycz,X. Wang, and H. Sun, Robust and precise facial landmarkdetection by self-calibrated pose attention network, IEEETransactions on Cybernetics, 53(6), 2021, 3546–3560.doi: 10.1109/TCYB.2021.3131569.
  6. [6] J. Wan, Z.H. Lai, J. Li, J. Zhou, and C. Gao, Robust faciallandmark detection by multi order multi constraint deepnetworks, IEEE Transactions on Neural Networks and LearningSystems, 33(5), 2022, 2181–2194.
  7. [7] S. Ren, X. Liu, H. Liu, and L. Wang, Cultivated landsegmentation of remote sensing image based on PSPNET ofattention mechanism, International Journal of Robotics &Automation, 37(1), 2022, 11–19.
  8. [8] M. Liu, D. Ren, H. Sun, S.X. Yang, and P. Shao, Orchardareas segmentation in remote sensing images via class featureaggregate discriminator, IEEE Geoscience and Remote SensingLetters, 19, 2022, 1–5.
  9. [9] H. Sun, Y. Zhang, P. Chen, Z.P. Dan, Z. Dan, S. Sun,J. Wan, and W. Li, Scale-free heterogeneous cycleGANfor defogging from a single image for autonomous drivingin fog, Neural Computing and Applications, 35, 2023,3737–3751.
  10. [10] F. Wen, J. Shi, and G. Gui, 3D positioning methodfor anonymous UAV based on bistatic polarized MIMOradar, IEEE Internet of Things Journal, 10(1), 2023,815–827.
  11. [11] F. Wen, G. Gui, and H. Gacanin, Compressive samplingframework for 2D-DOA and polarization estimation inmmWave polarized massive MIMO systems, IEEE Transac-tions on Wireless Communications, 22(5), 2023, 3071–3083,doi: 10.1109/TWC.2022.3215965.
  12. [12] M. Yu, Y.Y. Sheng, H. Sun, Y. Zheng, H. Li, andW. Yang, Research on operation and maintenance routeplanning of offshore wind farm based on multiagent, WirelessCommunications and Mobile Computing, 2022, 2022, 3278239.doi: https://doi.org/10.1155/2022/3278239.
  13. [13] Z. Zhou and X.T. Yang, Pine wilt disease detection inUAV-captured images, International Journal of Robotic &Automation, 37(1), 2022, 37–43.
  14. [14] X.L. Xu, H. Tao, and C.J. Li, Detection and location of pinewilt disease induced dead pine trees based on faster R-CNN,Transaction of the Chinese Society for Agricultural Machinery,7(51), 2020, 228–236. (in Chinese)
  15. [15] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towardsreal-time object detection with region proposal networks, IEEETransactions on Pattern Analysis & Machine Intelligence,39(6), 2017, 1137–1149.
  16. [16] G. Song, Y. Liu, and X. Wang, Revisiting the sibling head inobject detector, 2020, arXiv:2003.07540.
  17. [17] K. Oksuz, B.C. Cam, S. Kalkan, and E. Akbas, Imbalanceproblems in object detection: A review, IEEE Transactionson Pattern Analysis and Machine Intelligence, 43(10), 2021,3388–3415.
  18. [18] J. Chen, Q. Wu, D. Liu, and T. Xu, Foreground-backgroundimbalance problem in deep object detectors: A review, 2020,arXiv:2006.09238.
  19. [19] Shrivastava, A. Gupta, and R. Girshick, Training region-basedobject detectors with online hard example mining, Proc. Conf.on Computer Vision & Pattern Recognition IEEE ComputerSociety, Las Vegas, NV, 2016, 761–769.
  20. [20] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Doll´ar,Focal loss for dense object detection, IEEE Transactionson Pattern Analysis & Machine Intelligence, 42(2), 2020,318–327.
  21. [21] Li, X. Yang, and C. Zhang, Rethinking classification andlocalization for cascade R-CNN, 2019, arXiv:1907.11914.
  22. [22] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn,and A. Zisserman, The pascal visual object classes (VOC)challenge, International Journal of Computer Vision, 88(2),2010, 303–338.75

Important Links:

Go Back