ANALYSIS OF POWER SOURCE OF MULTIROTOR UAVs

Yuehao Yan , Zhiying Lv , Jinbiao Yuan, and Jigui Chai

References

  1. [1] A. Dicks and D.A.J. Rand, Fuel cell systems explained. (JohnWiley & Sons Inc, 2018).
  2. [2] B.C.H. Steele and A. Heinzel, Materials for fuel-cell technolo-gies, in Materials for sustainable energy: A collection of peer-reviewed research and review articles from nature publishinggroup, World Scientific Publishing, 2011, 224–231.
  3. [3] HUS.Hycopter[EB/OL], https://www.hus.sg/hydrogen-multi-rotor.2018-07.
  4. [4] Horizon, Energy, Systems, PTE, Ltd. Hydrogen generator andmethod of operating it [P], (Singapore: SG10201401825UA,20141030).
  5. [5] Shenzhen Branch Bit Aviation Technology Co., Ltd. HYDrone-1800 [EB/OL], http://www.mmcuav.cn/prod_view.aspx?TypeId=68&Id=178&FId=t3:68:3.2018-07.570
  6. [6] Shenzhen Kobit Aeronautical Technology Co., Ltd. A hy-drogen fuel cell power supply for UAV field [P], (China:CN206098554U,20170412).
  7. [7] Shenzhen Kobit Aeronautical Technology Co., Ltd. A hy-drogen fuel cell power supply for UAV field [P], (China:CN205707375U,20161123).
  8. [8] B.G. Gang and S. Kwon, All-in-one portable electric powerplant using proton exchange membrane fuel cells for mobile ap-plications, International Journal of Hydrogen Energy, 43(12),2018, 6331–6339.
  9. [9] Yi Watt Technology Co., Ltd. Multi axis power source UAV[P], (China: CN205971827U,20170222).
  10. [10] dralong.DZ310[EB/OL]. http://www.zluav.com/dazhuang.html.2018-07.
  11. [11] Liaoning Zhuang Long Unmanned Aerial Vehicle TechnologyCo., Ltd. A large-scale plant protection unmanned aerialvehicle driven independently by fuel power [P], (China:CN205554595U,20160907).
  12. [12] Liaoning Zhuang Long Unmanned Aerial Vehicle TechnologyCo., Ltd. A large-scale plant protection unmanned aerialvehicle driven independently by fuel power [P], (China:CN206050075U,20170329).
  13. [13] Yi Watts Technology Stock Company. Multi rotor UAV [P],(China: CN206171820U,20170517).
  14. [14] M.A. Green, Y. Hishikawa, W. Warta, et al., Solar cell effi-ciency tables (version 50), Progress in Photovoltaics, 25, 2017,(NREL/JA-5J00-68932), 668–676.
  15. [15] G. Gao, Z. Li, B. Song, et al., Key technology analysis of solarpowered UAV, Flight Mechanics, 28(1), 2010, 1–4.
  16. [16] D. Li, J. Shi, Y. Xu, et al., Inorganic–organic halide perovskitesfor new photovoltaic technology. National Science Review, 5(4),2018, 559–576.
  17. [17] A. Emadi, Y.J. Lee, and K. Rajashekara, Power electronicsand motor drives in electric, hybrid electric, and plug-in hybridelectric vehicles. IEEE Transactions on Industrial Electronics,55(6), 2008, 2237–2245.
  18. [18] K.I. Bolotin, K.J. Sikes, Z. Jiang, et al., Ultrahigh electronmobility in suspended graphene, Solid State Communications,146(9–10), 2008, 351–355.
  19. [19] M.D. Stoller, S. Park, Y. Zhu, et al., Graphene-based ultraca-pacitors, Nano letters, 8(10), 2008, 3498–3502.
  20. [20] M. Zhou, Y. Zhai, S. Dong, Electrochemical sensing andbiosensing platform based on chemically reduced grapheneoxide, Analytical Chemistry, 81(14), 2009, 5603–5613.
  21. [21] K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electricfield effect in atomically thin carbon films. Science, 306(5696),2004, 666–669.
  22. [22] T. Lin, I.W. Chen, F. Liu, et al., Nitrogen-doped mesoporouscarbon of extraordinary capacitance for electrochemical energystorage, Science, 350(6267), 2005, 1508–1513.
  23. [23] C.K. Chan, H. Peng, G. Liu, et al., High-performance lithiumbattery anodes using silicon nanowires, Nature Nanotechnology,3(1), 2008, 31–35.
  24. [24] Z. Liu, X. Wang, D. Qi, et al., High-adhesion stretchableelectrodes based on nanopile interlocking, Advanced Materials,29(2), 2017, 1603382.
  25. [25] G. Girishkumar, B. McCloskey, A.C. Luntz, et al., Lithium-air battery: Promise and challenges, The Journal of PhysicalChemistry Letters, 1(14), 2010, 2193–2203.
  26. [26] Y. Shao, F. Ding, J. Xiao, et al., Making Li–air batteriesrechargeable: Material challenges, Advanced Functional Mate-rials, 23(8), 2013, 987–1004.
  27. [27] T. Zhang, X. Zhang, and Z.Y. Wen, Research progress of solidlithium air battery, Energy Storage Science and Technology,5(5), 2016, 702–712.
  28. [28] T. Liu, M. Leskes, W. Yu, et al., Cycling Li–O2 batteries viaLiOH formation and decomposition, Science, 350(6260), 2015,530–533.

Important Links:

Go Back