Zheng Zhu, Wei Zou , and Feng Zhang
[1] Z. Zhu, W. Zou, Q. Wang, and F. Zhang, A velocity compen-sation visual servo method for oculomotor control of bioniceyes, International Journal of Robotics and Automation, 33(1),2018, 33–44. [2] W. Yuan, Z. Cao, Y. Zhang, and M. Tan, A robot poseestimation approach based on object tracking in monitoringscenes, International Journal of Robotics and Automation,32(3), 2017, 256–265. [3] K.-H. Lee and J.-N. Hwang, On-road pedestrian tracking acrossmultiple driving recorders, IEEE Transactions on Multimedia,17(9), 2015, 1429–1438. [4] Y. Wu, J. Lim, and M.-H. Yang, Online object tracking: Abenchmark, IEEE Conf. on Computer Vision and PatternRecognition, Portland, Oregon, USA, 2013, 2411–2418. [5] L. Cao, C. Wang, and J. Li, Robust depth-based object trackingfrom a moving binocular camera, Signal Processing, 112, 2015,154–161. [6] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, Robust mul-tiperson tracking from a mobile platform, IEEE Transactionson Pattern Analysis and Machine Intelligence, 31(10), 2009,1831–1846. [7] Y. Chen, Y. Shen, X. Liu, and B. Zhong, 3d object trackingvia image sets and depth-based occlusion detection, SignalProcessing, 112, 2015, 146–153. [8] B. Zhong, Y. Shen, Y. Chen, et al., Online learning 3d contextfor robust visual tracking, Neurocomputing, 151, 2015, 710–718. [9] S. Hare, S. Golodetz, A. Saffari, et al., Struck: Structuredoutput tracking with kernels, IEEE Transactions on PatternAnalysis and Machine Intelligence, 38(10), 2016, 2096–2109. [10] Z. Kalal, K. Mikolajczyk, J. Matas, et al., Tracking-learning-detection, IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 34(7), 2012, 1409–1422. [11] Z. Zhu, W. Zou, Q. Wang, and F. Zhang, STD: A stereo trackingdataset for evaluating binocular tracking algorithms, IEEEInternational Conf. on Robotics and Biomimetics, Qingdao,China, 2016, 2215–2220. [12] N. Pateromichelakis, A. Mazel, M. Hache, et al., Head-eyessystem and gaze analysis of the humanoid robot Romeo,IEEE/RSJ International Conf. on Intelligent Robots and Sys-tems, Chicago, Illinois, USA, 2014, 1374–1379. [13] I. L¨utkebohle, F. Hegel, S. Schulz, et al., The bielefeld an-thropomorphic robot head flobi, IEEE International Conf.on Robotics and Automation, Anchorage, Alaska, USA, 2010,3384–3391. [14] T. Kishi, T. Otani, N. Endo, et al., Development of expressiverobotic head for bipedal humanoid robot, IEEE/RSJ Inter-national Conf. on Intelligent Robots and Systems, Vilamoura,Algarve, Portugal, 2012, 4584–4589. [15] R. Yao, S. Xia, Z. Zhang, and Y. Zhang, Real-time correla-tion filter tracking by efficient dense belief propagation withstructure preserving, IEEE Transactions on Multimedia, 19(4),2017, 772–784. [16] A. Ess, B. Leibe, K. Schindler, and L. Van Gool, A mobilevision system for robust multi-person tracking, IEEE Conf. onComputer Vision and Pattern Recognition, 2008, 1–8. [17] R. Rifkin, G. Yeo, T. Poggio, et al., Regularized least-squaresclassification, Nato Science Series Sub Series III Computerand Systems Sciences, 190, 2003, 131–154. [18] C. Bao, Y. Wu, H. Ling, and H. Ji, Real time robust L1 trackerusing accelerated proximal gradient approach, IEEE Conf. onComputer Vision and Pattern Recognition, Providence, RhodeIsland, USA, 2012, 1830–1837. [19] D.S. Bolme, J.R. Beveridge, B.A. Draper, and Y.M. Lui, Visualobject tracking using adaptive correlation filters, IEEE Conf.on Computer Vision and Pattern Recognition, San Francisco,California, USA, 2010, 2544–2550. [20] J.F. Henriques, R. Caseiro, P. Martins, and J. Batista, Ex-ploiting the circulant structure of tracking-by-detection withkernels, European Conf. on Computer Vision, Florence, Italy,2012, 702–715.489 [21] J.F. Henriques, R. Caseiro, P. Martins, and J. Batista, High-speed tracking with kernelized correlation filters, IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 37(3),2015, 583. [22] Y. Li and J. Zhu, A scale adaptive kernel correlation filtertracker with feature integration, European Conf. on ComputerVision Workshop, Zurich, Switzerland, 2014, 254–265. [23] M. Danelljan, G. H¨ager, F. Khan, and M. Felsberg, Accuratescale estimation for robust visual tracking, British MachineVision Conf., Nottingham, UK, 2014. [24] Y. Wu, J. Lim, and M.-H. Yang, Object tracking bench-mark, IEEE Transactions on Pattern Analysis and MachineIntelligence, 37(9), 2015, 1834–1848. [25] H. Li, C. Shen, and Q. Shi, Real-time visual tracking us-ing compressive sensing, IEEE Conf. on Computer Visionand Pattern Recognition, Colorado Springs, CO, USA, 2011,1305–1312. [26] R.T. Collins, Mean-shift blob tracking through scale space,IEEE Conf. on Computer Vision and Pattern Recognition,Vol. 2, 2003, II–234. [27] J.H. Yoon, M.-H. Yang, and K.-J. Yoon, Interacting multiviewtracker, IEEE Transactions on Pattern Analysis and MachineIntelligence, 38(5), 2016, 903–917. [28] W. Zhong, H. Lu, and M.-H. Yang, Robust object tracking viasparsity-based collaborative model, IEEE Conf. on ComputerVision and Pattern Recognition, Providence, Rhode Island,USA, 2012, 1838–1845. [29] S. Song and J. Xiao, Tracking revisited using RGBD camera:unified benchmark and baselines, IEEE International Conf.on Computer Vision, Sydney, Australia, 2013, 233–240. [30] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van deWeijer, Adaptive color attributes for real-time visual tracking,IEEE Conf. on Computer Vision and Pattern Recognition,Columbus, Ohio, USA, 2014, 1090–1097. [31] J.H. Yoon, D.Y. Kim, and K.-J. Yoon, Visual tracking viaadaptive tracker selection with multiple features, EuropeanConf. on Computer Vision, Florence, Italy, 2012, 28–41. [32] X. Lan, A.J. Ma, and P.C. Yuen, Multi-cue visual tracking usingrobust feature-level fusion based on joint sparse representation,IEEE Conf. on Computer Vision and Pattern Recognition,Columbus, Ohio, USA, 2014, 1194–1201. [33] D. Chen, Z. Yuan, G. Hua, Y. Wu, and N. Zheng, Description-discrimination collaborative tracking, European Conf. on Com-puter Vision, Zurich, Switzerland, 2014, 345–360. [34] P. Li, D. Wang, L. Wang, and H. Lu. Deep visual tracking:Review and experimental comparison, Pattern Recognition,2018, 323–338. [35] C. Sun, D. Wang, H. Lu, and M.H. Yang. Correlation trackingvia joint discrimination and reliability learning, IEEE Conf.on Computer Vision and Pattern Recognition, Salt Lake City,Utah, 2018, 489–497. [36] C. Sun, H. Lu, and M.H. Yang. Learning spatial-aware re-gressions for visual tracking, IEEE Conf. on Computer Visionand Pattern Recognition, Salt Lake City, Utah, USA, 2018,8962–8970. [37] M. Kristan, A. Leonardis, J. Matas, et al., The visual objecttracking vot2016 challenge results, European Conf. on Com-puter Vision Workshop, Amsterdam, The Netherlands, 2016,191–217. [38] M. Kristan, A. Leonardis, J. Matas, et al., The visual objecttracking vot2017 challenge results, IEEE International Conf.on Computer Vision Workshop, Venice, Italy, 2017, 1–57. [39] M. Danelljan, A. Robinson, F. Shahbaz Khan, and M. Felsberg,Beyond correlation filters: Learning continuous convolutionoperators for visual tracking, European Conf. on ComputerVision, Amsterdam, The Netherlands, 2016, 472–488. [40] M. Danelljan, G. Bhat, F. Shahbaz Khan, and M. Fels-berg, ECO: Efficient convolution operators for tracking, IEEEConf. on Computer Vision and Pattern Recognition, Honolulu,Hawaii, USA, 2017. [41] OpenTLD, https://github.com/zk00006/OpenT2012LD. [42] K. Zhang, Y. Fang, D. Min, et al., Cross-scale cost aggregationfor stereo matching, IEEE Conf. on Computer Vision andPattern Recognition, Columbus, Ohio, USA, 2014, 1590–1597. [43] Y. Cong, H. Chen, and B. Gao, Real-time path trackingmethod using differential flatness for car-like mobile robot,International Journal of Robotics and Automation, 33(6), 2018,21–32. [44] S. Mao, H. Wu, M. Lu, et al., Multiple 3d marker localiza-tion and tracking system in image-guided radiotherapy, In-ternational Journal of Robotics and Automation, 32(5), 2017,517–523.
Important Links:
Go Back