Yujiang Xiang, Grahame MacKugler, Joo H. Kim, and James Yang
[1] R. Riener, M. Rabuffetti, and C. Frigo, Stair ascent anddescent at different inclinations, Gait and Posture, 15, 2002, 32–44. [2] A. Protopapadaki, W.I. Drechsler, M.C. Cramp, F.J. Coutts, and O.M. Scott, Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals, Clinical Biomechanics, 22(2), 2007, 203–210. [3] H.C. Lin, T.W. Lu, and H.C. Hsu, Three-dimensional analysis of kinematic and kinetic coordination of the lower limb joints during stair ascent and descent, Biomedical Engineering – Applications, Basis & Communications, 16(2), 2004, 101–108. [4] Y. Xiang, J.S. Arora, and K. Abdel-Malek, Physics-based modeling and simulation of human walking: A re-view of optimization-based and other approaches, Struc-tural and Multidisciplinary Optimization, 42(1), 2010,1–23. [5] C. Chevallereau and Y. Aoustin, Optimal reference trajectories for walking and running of a biped robot, Robotica, 19(5), 2001, 557–569. [6] Q. Zou and J. Yang, Motion synthesis for a digital pregnant woman multibody system, International Journal of Robotics and Automation, 28(2), 2013, 192–202. [7] G. Bessonnet, J. Marot, P. Seguin, and P. Sardain, Parametric-based dynamic synthesis of 3D-gait, Robotica, 28(4), 2010, 563–581. [8] L. Ren, R.K. Jones, and D. Howard, Predictive modellingof human walking over a complete gait cycle, Journal ofBiomechanics, 40(7), 2007, 1567–1574. [9] B.J. Fregly, J.A. Reinbolt, K.L. Rooney, K.H. Mitchell, and T.L. Chmielewski, Design of patient-specific gait modifications for knee osteoarthritis rehabilitation, IEEE Transactions on Biomedical Engineering, 54(9), 2007, 1687–1695. [10] D.G. Thelen and F.C. Anderson, Using computed musclecontrol to generate forward dynamic simulations of humanwalking from experimental data, Journal of Biomechanics,39(6), 2006, 1107–1115. [11] C.L. Bottasso, B.I. Prilutsky, A. Croce, E. Imberti, and S. Sartirana, A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system, Multibody System Dynamics, 16(2), 2006, 123–154. [12] A. Eriksson and A. Nordmark, Temporal finite element formulation of optimal control in mechanisms, Computer Methods in Applied Mechanics and Engineering, 199(25–28), 2010, 1783–1792. [13] J. Lo, G. Huang, and D. Metaxas, Human motion planningbased on recursive dynamics and optimal control techniques,Multibody System Dynamics, 8(4), 2002, 433–458. [14] X. Mu and Q. Wu, Synthesis of a complete sagittal gait cycle for a five-link biped robot, Robotica, 21(5), 2003, 581–587. [15] J. Rasmussen, M. Damsgaard, and M. Voigt, Muscle recruitment by the min/max criterion – a comparative numerical study, Journal of Biomechanics, 34(3), 2001, 409–415. [16] R.T. Marler and J.S. Arora, Survey of multi-objective optimization methods for engineering, Structural and Multidisciplinary Optimization, 26(6), 2004, 369–395. [17] P.E. Gill, W. Murray, and M.A. Saunders, SNOPT: An SQPalgorithm for large-scale constrained optimization, SIAM J.Optim., 12(4), 2002, 979–1006. [18] H. Cheng, L. Obergefell, and A. Rizer, Generator of body (GE-BOD) manual, AL/CF-TR-1994-0051, Armstrong Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, 1994. [19] Y. Xiang, H.J. Chung, J.H. Kim, R. Bhatt, S. Rahmatalla, J. Yang, T. Marler, J.S. Arora, and K. Abdel-Malek, Predictive dynamics: An optimization-based novel approach for human motion simulation, Structural and Multidisciplinary Optimization, 41(3), 2010, 465–479. [20] K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, Robotics: Control, sensing, vision, and intelligence (New York, NY: McGraw-Hill, 1987). [21] J.M. Hollerbach, A recursive Lagrangian formulation of manipulator dynamics and a comparative study of dynamics formulation complexity, IEEE Transactions on Systems, Man, and Cybernetics, 11(10), 1980, 730–736. [22] R.W. Toogood, Efficient robot inverse and direct dynamics algorithms using micro-computer based symbolic generation, Proceedings of IEEE International Conference on Robotics and Automation, 3, 1989, 1827–1832. [23] Y. Xiang, J.S. Arora, and K. Abdel-Malek, Optimization-based motion prediction of mechanical systems: Sensitivity analysis, Structural and Multidisciplinary Optimization, 37(6), 2009, 595–608. [24] M. Vukobratovi´c and B. Borovac, Zero-moment point – thirty five years of its life, International Journal of Humanoid Robotics, 1(1), 2004, 157–173. [25] J.H. Kim, Y. Xiang, R. Bhatt, J. Yang, H.J. Chung, J.S. Arora, and K. Abdel-Malek, Generating effective whole-body motions of a human-like mechanism with efficient ZMP formulation, International Journal of Robotics and Automation, 24(2), 2009, 125–136. [26] C. De Boor, A practical guide to splines (New York, NY: Springer-Verlag, 2001). [27] Y. Xiang, J.S. Arora, H.J. Chung, H.J. Kwon, S. Rahmatalla, R. Bhatt, and K. Abdel-Malek, Predictive simulation of human walking transitions using an optimization formulation, Structural and Multidisciplinary Optimization, 45(5), 2012, 759–772. [28] Y. Xiang, J.S. Arora, S. Rahmatalla, and K. Abdel-Malek, Optimization-based dynamic human walking prediction: One step formulation, International Journal for Numerical Methods in Engineering, 79(6), 2009, 667–695. [29] Y. Xiang, J.S. Arora, and K. Abdel-Malek, Optimization-based prediction of asymmetric human gait, Journal of Biomechanics, 44(4), 2011, 683–693. [30] S. Rahmatalla, Y. Xiang, R. Smith, J. Meusch, and R. Bhatt, A validation framework for predictive human models, International Journal of Human Factors Modelling and Simulation, 2(1/2), 2011, 67–84. [31] Y. Xiang, S. Rahmatalla, J.S. Arora, and K. Abdel-Malek, Enhanced optimization-based inverse kinematics methodology considering joint discomfort, International Journal of Human Factors Modelling and Simulation, 2(1/2), 2011, 111–126. [32] Y. Xiang, J.S. Arora, and K. Abdel-Malek, Hybrid predictive dynamics: A new approach to simulate human motion, Multibody System Dynamics, 28(3), 2012, 199–224. [33] I. Pasciuto, S. Ausejo, J.T. Celig¨ueta, ´A. Suescun, and A. Caz´on, A comparison between optimization-based human motion prediction methods: Data-based, knowledge-based and hybrid approaches, Structural and Multidisciplinary Optimization, 49(1), 2014, 169–183. [34] I. Pasciuto, S. Ausejo, J.T. Celig¨ueta, ´A. Suescun, and A. Caz´on, A hybrid dynamic motion prediction method for multi-body digital human models based on a motion database and motion knowledge, Multibody System Dynamics, 32(1), 2014, 27–53. [35] H.J. Kwon, Y. Xiang, R. Bhatt, S. Rahmatalla, J.S. Arora, and K. Abdel-Malek, Backward walking simulation of humans using optimization, Structural and Multidisciplinary Optimization, 50(1), 2014, 169–179. [36] Y. Xiang, J.H. Kim, H.J. Chung, J. Yang, and H.J. Kwon, Human stair ascent and descent simulations, ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, NY, August 17–20, 2014. [37] Y. Xiang, J.S. Arora, S. Rahmatalla, T. Marler, R. Bhatt, and K. Abdel-Malek, Human lifting simulation using a multi-objective optimization approach, Multibody System Dynamics, 23(4), 2010, 431–451. [38] Y. Xiang, Human carrying simulation with symmetric andasymmetric loads using optimization, Journal of AppliedBiomechanics, 30(1), 2014, 140–146. [39] R. Bhatt, Y. Xiang, J.H. Kim, A. Mathai, R. Penmatsa, H.J. Chung, H.J. Kwon, A. Patrick, S. Rahmatalla, T. Marler, S. Beck, J. Yang, J.S. Arora, K. Abdel-Malek, and J.P. Obusek, Dynamic optimization of human stair-climbing motion, SAE Digital Human Modeling Conference, Pittsburgh, Pennsylvania, June 17–18, 2008. [40] Y. Xiang, J.S. Arora, and K. Abdel-Malek, 3D human lifting motion prediction with different performance measures, International Journal of Humanoid Robotics, 9(2), 2012, 1250012.
Important Links:
Go Back