Xian H. Li, Hai B. Yu, and Ming Z. Yuan


  1. [1] J.G. Ziegler and N.B. Nichols, Optimum settings for automaticcontrollers, Transactions of the ASME, 64, 1942, 759–768.
  2. [2] J.G. Ziegler and N.B. Nichols, Process lags in automatic controlcircuits, Transactions of the ASME, 65, 1943, 433–444.
  3. [3] G.H. Cohen and G.A. Coon, Theoretical consideration ofrelated control, Transactions of the ASME, 75, 1953, 827–834.
  4. [4] C.R. Madhuranthakam, A. Elkamel, and H. Budman, Optimaltuning of PID controllers for FOPTD, SOPTD and SOPTDwith lead processes, Chemical Engineering and Processing, 47,2008, 251–264.
  5. [5] D.H. Kim and J.H. Cho, Intelligent tuning of PID controllerwith disturbance function using immune algorithm, 2004 IEEEAnnual Meeting Fuzzy Information Processing, 1 (27–30), 2004,286–291.
  6. [6] Z.L. Gaing, A particle swarm optimization approach for opti-mum design of PID controller in AVR System, IEEE Trans-actions on Energy Conversion, 19 (2), 2004, 384–391.
  7. [7] S. Pothiya and I. Ngamroo, Optimal fuzzy logic-based PIDcontroller for load–frequency control including superconduct-ing magnetic energy storage units, Energy Conversion andManagement, 49, 2008, 2833–2838.
  8. [8] M. Zhuang and D.P. Atherton, Automatic tuning of opti-mum PID controllers, IEE Proceedings D Control Theory andApplications, 140 (3), 1993, 216–224.
  9. [9] S. Daley and G.P. Liu, Optimal PID tuning using direct searchalgorithms, Computing Control Engineering Journal, 10 (2),1999, 51–56.
  10. [10] H. Panagopoulos, K.J. Astrom, and T. Hagglund, Designof PID controllers based on constrained optimization, IEEProceedings, Control Theory and Applications, 149 (1), 2002,32–40.
  11. [11] C. Hwang and C.Y. Hsiao, Solution of a non-convex optimiza-tion arising in PI/PID control design, Automatica, 38, (2002),1895–1904.
  12. [12] C.H. Hsieh and J.H. Chou, Design of optimal PID controllers forPWM feedback systems with bilinear plants, IEEE Transactionon Control Systems Technology, 15 (6), 2007, 1075–1079.
  13. [13] J.B. He, Q.G. Wang, and T.H. Lee, PI/PID controller tuningvia LQR approach, Proc. 37th IEEE Conference on Decisionand Control, Tampa, F., 1998, 1177–1182.260
  14. [14] G.R. Yu and R.C. Hwang, Optimal PID speed control of brush-less DC motors using LQR approach, 2004 IEEE InternationalConference on Systems, Man and Cybernetics, The Hague,Netherlands 473–478.
  15. [15] P.B. Dickinson and A.T. Shenton, A parameter space approachto constrained variance PID controller design, Automatica, 45,2009, 830–835.
  16. [16] J.C. Basilio and S.R. Matos, Design of PI and PID controllerswith transient performance specification, IEEE Transactionson Education, 45 (4), 2002.
  17. [17] M. Saeki, Fixed structure PID controller design for standardH∞ control problem, Automatica, 42, 2006, 93–100.
  18. [18] O. Lequin, M. Gevers, M. Mossberg, E. Bosmans, and L. Triest,Iterative feedback tuning of PID parameters: Comparison withclassical tuning rules, Control Engineering Practice, 11, 2003,1023–1033.
  19. [19] M. Xu, S.Y. Li, C.K. Qi, and W.J. Cai, Auto-tuning ofPID controller parameters with supervised receding horizonoptimization, ISA Transactions, 44, 2005, 491–500.
  20. [20] G.L. Luo and G.N. Saridis, LQ design of PID controllers forrobot arms, IEEE Journal of Robotics and Automation, 1 (3),1985, 152–159.
  21. [21] X.H. Li, H.B. Yu, and M. Z. Yuan, Design of an optimalPID controller based on Lyapunov approach, Proceedings of2009 International Conference on Information Engineeringand Computer Science (ICIECS-2009), Wuhan, 19–20, 2009.
  22. [22] X.H. Li, H.B. Yu, M.Z. Yuan, and J. Wang, Design of robustoptimal proportional–integral–derivative controller based onnew interval polynomial stability criterion and Lyapunov the-orem in the multiple parameters’ perturbations circumstance,IET Control Theory and Applications, 4 (11), 2010, 2427–2440.
  23. [23] D.E. Rivera, M. Morari, and S. Skogestad, Internal modelcontrol 4 PID controller design, Industrial and EngineeringChemistry, Process Design and Development, 25, 1986, 252–265.
  24. [24] S. Skogestad, Simple analytic rules for model reduction andPID controller tuning, Journal of Process Control, 13 (4), 2003,291–309.
  25. [25] M. Veronesi and A. Visioli, Performance assessment and re-tuning of PID controllers for integral processes, Journal ofProcess Control, 20, 2010, 261–269.
  26. [26] A. Visioli, A new design for a PID plus feedforward controller,Journal of Process Control, 14, 2004, 457–463.
  27. [27] K.K. Tan, T.H. Lee, and X. Jiang, On-line relay identification,assessment and tuning of PID controller, Journal of ProcessControl, 11, 2001, 483–496.
  28. [28] Q.G. Wanga, Z.P. Zhang, K.J. Astrom, and L.S. Chek, Guar-anteed dominant pole placement with PID controllers, Journalof Process Control, 19, 2009, 349–352.
  29. [29] K.J. ˚Astr¨om and T. H¨agglund, Automatic tuning of simpleregulators with specifications on phase and amplitude margins,Automatica, 20 (5), 1984, 645–651.
  30. [30] K.J. ˚Astr¨om and T. H¨agglund, PID controllers: Theory, designand tuning, 2nd ed. (Research Triangle Park, NC: InstrumentSociety of America, 1995).
  31. [31] K.J. Astrom and T. Hagglund, The future of PID control,Control Engineering Practice, 9, 2001, 1163–1175.
  32. [32] V. Bob´al, J. B¨ohm, J. Fessl, and J. Mach´acek, Digital self-tuning controllers: Algorithms, implementation and applica-tions (Advanced Textbooks in Control and Signal Processing),1st ed. (Berlin Heidelberg: Springer, 2005), 53–136. ISBN-10:1852339802
  33. [33] A. Leva, PID autotuning algorithm based on relay feedback,IEE Proc. D, Control Theory and Applications, 140 (5), 1993,328–338.
  34. [34] A.Visioli, Optimal tuning of PID controllers for integral andunstable processes, IEE Proceedings on Control Theory Appli-cation, 148 (2), 2001, 180–184.
  35. [35] X.H. Li, H.B. Yu, M.Z. Yuan, C.Z. Zang, and Z. Wang, OptimalMIMO PID controllers for the MIMO processes, Proc. ASME2011 Dynamic Systems and Control Conference, Arlington,VA, 2011, 1–8.
  36. [36] J. Lan, J. Cho, D. Erdogmus, J.C. Principe, M.A. Motter,and J. Xu, Local linear PID controllers for nonlinear control,Control and Intelligent Systems, 1, 2005, 26–34.
  37. [37] T.R. Rangaswamy, J. Shanmugam, and K.P. Mohammed,Adaptive fuzzy tuned PID controller for combustion of utilityboiler, Control and Intelligent Systems, 1, 2005, 63–71.
  38. [38] M. Tokuda, T. Yamamoto, and Y. Monden, A neural-net basedPID controllers for nonlinear multivariable systems, Controland Intelligent Systems, 1, 2005, 36–46.
  39. [39] J.J. D’Azzo and C.H. Houpis, ‘Linear control system analysisand design’, 2nd ed. (New York, USA: McGraw-Hill, Inc.,1981), 483–522.
  40. [40] M.D. Tong, Linear system theory and design, 2nd ed. (Heifei,China: University of Science and Technology of China press,2004), (in Chinese), 208–245.
  41. [41] G. Obinata and B.D. Anderson, Model reduction for controlsystem design, (Berlin Heidelberg: Springer, 2001), 22–42.
  42. [42] B.C. Moore, Principal component analysis in linear systems:Controllability, observability, and model reduction, IEEETransactions on Automatic Control, 26 (1), 17–32.
  43. [43] D.G. Meyer and S. Srinivasan, Balancing and model reductionfor second-order form linear systems, IEEE Transactions onAutomatic Control, 41 (11), 1632–1644.
  44. [44] M.J. Bosley and F.P. Less, Methods for the reduction of highorder state variable models to simple transfer function models,Automatica, 8 (6), 1972, 765–775.
  45. [45] C.M. Liaw, C.T. Pan, and Y.C. Chen, Reduction of transferfunctions using dispersion analysis and the continued fractionmethod, International Journal of Systems Science, 17 (5),1986, 807–817.
  46. [46] W. Qi and W. Shifu, Principle of automatic control, 2nd ed.(Tsinghua University Press 2006) (in Chinese), 152–402.
  47. [47] D.E. Seborg, T.F. Edgar, and D.A. Mellichamp, Process dy-namic and control, in J.C. Wang and Y.H. Jin (Trans.),2nd ed. (Publishing House of Electronic Industry, 2006), (inChinese), 96–360.
  48. [48] S.S. Hu, Automatic control theory, 4th edition, Sciences press,Beijing, 2001, (in Chinese), 77–269.
  49. [49] T.F. Coleman and Y. Li, On the convergence of reflectiveNewton methods for large-scale nonlinear minimization subjectto bounds, Mathematical Programming, 67(2), 1994, 189–224.
  50. [50] T.F. Coleman and Y. Li, A reflective Newton method forminimizing a quadratic function subject to bounds on someof the variables, SIAM Journal on Optimization, 6(4), 1996,1040–1058.
  51. [51] D.F. Shanno, Conditioning of quasi-Newton methods for func-tion minimization, Mathematics of Computing, 24, 1970, 647–656.
  52. [52] R.K. Brayton, S.W. Director, G.D. Hachtel, and L. Vidigal,A new algorithm for statistical circuit design based on quasi-Newton methods and function splitting, IEEE Transactionson Circuits and Systems, 26(9), September 1979, 784–794.
  53. [53] R. Fletcher and M.J.D. Powell, A rapidly convergent descentmethod for minimization, Computer Journal, 6, 1963, 163–168.
  54. [54] M.A. Branch, T.F. Coleman, and Y. Li, A subspace, inte-rior, and conjugate gradient method for large-scale boundcon-strained minimization problems, SIAM Journal on ScientificComputing, 21(1), 1999, 1–23.
  55. [55] T.F. Coleman and A. Verma, A preconditioned conjugategradient approach to linear equality constrained minimization,Computational Optimization and applications, 20(1), 61–72.
  56. [56] T. Steihaug, The conjugate gradient method and trust re-gions in large scale optimization, SIAM Journal on NumericalAnalysis, 20, 1983, 626–637.
  57. [57] R.J. Vanderbei and D.F.Shanno, An interior point algorithmfor non-convex nonlinear programming, Computational Opti-mization and Applications, 13, 1999, 231–252.
  58. [58] D.F. Shanno and R.J. Vanderbei, Interior point methods fornon-convex nonlinear programming: Orderings and higher-order methods, Mathematical Programming, 87, 2000, 303–316.
  59. [59] Y. Zhang, Solving large-scale linear programs by interiorpointmethods under the MATLAB environment, Technical ReportTR 96-01, Department of Mathematics and Statistics, Univer-sity of Maryland, Baltimore County, Baltimore, MD, 1995.261,

Important Links:

Go Back