FORMATION AND ZONING CONTROL OF MULTI-ROBOT SYSTEMS

Peter C.Y. Chen, Jie Wan, Aun N. Poo, and Shuzhi S. Ge

References

  1. [1] T. Balch & R.C. Arkin, Behavior-based formation controlfor multirobot teams, IEEE Transaction in Robotics andAutomation, 14(6), 1998, 926–939.
  2. [2] T. Balch & M. Hybinette, Social potentials for scalable multi-robot formations, Proc. IEEE Conf. Robotics and Automation,1, San Francisco, CA, April 2000, 73–81.
  3. [3] X. Yun, G. Alptekin, & O. Albayrak, Line and circle forma-tion of distributed physical mobile robots, Journal of RoboticSystems, 14(2), 1997, 63–76.
  4. [4] W. Ren & R.W. Beard, A decentralized scheme for spacecraftformation flying via the virtual structure approach, Proc.American Control Conf., 2, Denver, Colorado, 2003, 1746–1751.
  5. [5] M.A. Lewis & K.-H. Tan, High precision formation controlof mobile robots using virtual structuresirtual structures, Au-tonomous Robots, 4(4), 1997, 387–403.
  6. [6] M. Egerstedt & X. Hu, Formation constrained multi-agentcontrol, IEEE Transactions on Robotics and Automation,17(6), 2001, 947–951.
  7. [7] N.E. Leonard & E. Fiorelli, Virtual leaders, artificial potentialsand coordinated control of groups, Proc. 40th IEEE Conf.Decision and Control, Orlando, FL, 2001, 2968–2973.
  8. [8] J.P. Desai, J. Ostrowski, & V. Kumar, Controlling formationsof multiple mobile robots, Proc. IEEE Conf. Robotics andAutomation, 4, Leuven, Belgium, 1998, 2864–2869.
  9. [9] T. Eren, P.N. Belhumeur, & A.S. Morse, Closing ranks invehicle formations based on rigidity, Proc. 41th IEEE Conf.Decision and Control, 3, 2002, 2959–2964.
  10. [10] R. Fierro, A. Das, V. Kumar, & J.P. Ostrowski, Hybridcontrol of formations of robots, Proc. IEEE Conf. Roboticsand Automation Seoul, Korea, 2001, 157–162.
  11. [11] D. Swaroop & J.K. Hedrick, String stability of interconnectedsystems, IEEE Transactions on Automatic Control, 41, 1996,349–357.
  12. [12] H.G. Tanner, G.J. Pappas, & V. Kumar, Leader-to-formationstability, IEEE Transactions on Robotics and Automation,20(3), 2004, 443–455.
  13. [13] M.M. Zavlanos & G.J. Pappas, Potential fields for maintain-ing connectivity of mobile networks, IEEE Transactions onRobotics, 23, August 2007, 812–816.
  14. [14] S.S. Ge & F.L. Lewis, Autonomous mobile robots: Sensing,control, decisionmaking and applications (Boca Raton: CRCPress, Taylor & Francis Group, 2006).
  15. [15] Z. Qu, J. Wang, & R.A. Hull, Cooperative control of dynam-ical systems with application to autonomous vehicles, IEEETransactions on Automatic Control, 53, 2008, 894–911.
  16. [16] Z. Qu, Cooperative control of dynamical systems: Applicationto autonomous vehicles (London: Springer-Verlag, 2009).
  17. [17] O. Khatib, Real time obstacle avoidance for manipulators andmobile robots, International Journal of Robotics Research,5(1), 1986, 90–98.
  18. [18] J.-C. Latombe, Robot motion planning (Boston: Kluwer Aca-demic Publishers, 1991).
  19. [19] M.W. Spong, F.L. Lewis, & C.T. Abdallah, Robot control:Dynamics, motion planning and analysis. IEEE Press Reprint,1992.
  20. [20] B.H. Krogh, A generalized potential field approach to obstacleavoidance control, Proc. SME Conf. Robot. Res., 1984.
  21. [21] M. Okutomi & M. Mori, Decision of robot movement by meansof a potential field, Advanced Robot, 1(2), 1986, 131–141.
  22. [22] J.-O. Kim & P. Khosla, Real-time obstacle avoidance usingharmonic potential functions, Proc. IEEE Conf. Robotics andAutomation, 1991, 790–796.
  23. [23] D.E. Koditschek, Exact robot navigation by means of potentialfunctions: some topological considerations, Proc. IEEE Conf.Robotics and Automation, 1987, 1–6.
  24. [24] E. Rimon & D.E. Koditschek, Exact robot navigation usingartificial potential functions, IEEE Transactions on RoboticsAutomation, 8(5), 1992, 501–518.
  25. [25] R. Volpe & P. Khosla, Artificial potentials with ellipticalisopotential contours for obstacle avoidance, Proc. IEEE Conf.Decision and Control, 1987, 180–185.
  26. [26] V.I. Utkin, S. Drakunov, H. Hashimoto, & F. Harashima, Robotpath obstacle avoidance control via sliding mode approach,Proc. IEEE/RSJ Int. Workshop on Intell. Robots and Syst.,1991, 1287–1290.
  27. [27] H. Hashimoto, F. Harashima, V.I. Utkin, S.A. Krasnova, & I.M.Kaliko, Sliding mode control and potential fields in obstacleavoidance, Proc. European Cont. Conf., 1993, 859–862.
  28. [28] S.S. Ge & C.-H. Fua, Queues and artificial potential trenchesfor multi-robot formations, IEEE Transactions on Robotics,21, 2005, 646–656.
  29. [29] F. Clarke, Optimization and nonsmooth analysis, Classics inapplied mathematics; 5 (Philadelphia: SIAM, 1990).
  30. [30] F. Clarke, Y.L.R. Stern, & P. Wolenski, Nonsmooth Analysisand Control Theory, Graduate Texts in Mathematics 178 (NewYork: Springer-Verlag, 1998).
  31. [31] D. Shevitz & B. Paden, Lyapunov stability theory of nonsmoothsystems, IEEE Transactions on Automatic Control, 39(9),1994, 1910–1914.
  32. [32] B.E. Paden & S.S. Sastry, Calculus for computing filipovsdifferential inclusion with application to the variable structurecontrol of robot manipulators, IEEE Transactions on Circuitsand Systems, CAS-34, 1987, 73–82.
  33. [33] X. Yun & Y. Yamamoto, Internal dynamics of a wheeledmobile robot, Proceedings of the 1993 IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Yokohama,Japan, 26–30 July 1993, 1288–1294.
  34. [34] S.S. Ge & Y.J. Cui, Dynamic motion planning for mobilerobots using potential field method, Autonomous Robots, 13,2002, 207–222.

Important Links:

Go Back