Eslam Mohammadpour and Mahyar Naraghi
[1] R.W. Brockett, Asymptotic stability and feedback stabilization, in Differential geometric control theory, R.W. Brockett, R.S. Millman, & H.J. Sussmann (Eds), (Boston: Birkhauser, 1983), 181–191. [2] A.M. Bloch, M. Reyhanoglu, & N.H. McClamroch, Control and stabilization of nonholonomic dynamic systems, IEEE Transactions on Automatic Control, 37(11), 1992, 1746–1757. [3] C. Samson, Time-varying feedback stabilization control of a car-like wheeled mobile robot, International Journal of Robotics Research, 12(1), 1993, 55–66. [4] C. Samson, Control of chained systems application to path following and time-varying point-stabilization of mobile robots, IEEE Transactions on Automatic Control, 40(1), 1995, 64–77. [5] A.M. Bloch, N.H. McClamroch, & M. Reyhanoglu, Controllability and stabilizability properties of a nonholonomic control system, Proc. of 29th IEEE Int. Conf. on Decision and Control, Hawaii, 1990, 1312–1314. [6] C. Canudas de Wit & O.J. Sørdalen, Exponential stabilization of mobile robots with nonholonomic constraints, IEEE Transactions on Automatic Control, 37(11), 1992, 1791–1797. [7] J. Guldner & V.I. Utkin, Stabilization of nonholonomic mobile robots using Lyapunov function for navigation and sliding mode control, Proc. of 33rd IEEE Int. Conf. on Decision and Control, Lake Buena Vista, Florida, USA, 1994, 2967–2972. [8] A. Astolfi, Discontinuous control of nonholonomic systems, System & Control Letters, 27(1), 1996, 37–45. [9] F. Pourboghrat, Exponential stabilization of nonholonomic mobile robots, Computers and Electrical Engineering, 28(5), 2002, 349–359. [10] R. Colbaugh, E. Barany, & K. Glass, Adaptive control of nonholonomic mechanical systems, Proc. of 35th Conference on Decision and Control, Japan, 1996, 1428–1434. [11] S.S. Ge, J. Wang, T.H. Lee, & G.Y. Zhou, Adaptive robust stabilization of dynamic nonholonomic chained systems, Journal of Robotic Systems, 18(3), 2000, 119–133. [12] M.-S. Kim, J.-H. Shin, S.-G. Hong, & J.-J. Lee, Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances, Mechatronics, 13(5), 2003, 507–519. [13] W.E. Dixon, M.S. de Queiroz, D.M. Dawson, & T.J. Flynn, Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity, IEEE Transactions on Control Systems Technology, 12(1), 2004, 138–147. [14] B.L. Ma & S.K. Tso, Robust discontinuous exponential regulation of dynamic nonholonomic wheeled mobile robots with parametric uncertainties, International Journal of Robust and Nonlinear Control, 18(9), 2007, 960–974. [15] F.N. Martins, W.C. Celeste, R. Carelli, M. Sarcinelli-Filho, & T.F. Bastos-Filho, An adaptive dynamic controller for autonomous mobile robot trajectory tracking, Control Engineering Practice, 16(11), 2008, 1354–1363. [16] C.-Y. Chen, T.-H.S. Li, Y.-C. Yeh, & C.-C. Chang, Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots, Mechatronics, 19(2), 2009, 156–166. [17] M.L. Corradini, T. Leo, & G. Orlando, Robust stabilization of mobile robot violating the nonholonomic constraint via quasisliding modes, Proc. of American Control Conference, San Diego, California, 1999, 3935–3939. [18] W.E. Dixon, D.M. Dawson, E. Zergeroglu, & A. Behal, Nonlinear control of wheeled mobile robots (London: Springer-Verlag, 2001). [19] K. Kozlowski & D. Pazderski, Practical stabilization of a skidsteering mobile robot – A kinematic-based approach, IEEE 3rd Int. Conference on Mechatronics, Budapest, Hungary, 2006, 519–524. [20] D. Pazderski & K. Kozłowski, Trajectory tracking of underactuated skid-steering robot, American Control Conference, Washington, USA, 2008, 3506–3511. [21] W. Leroquais & B. d’Andrea-Novel, Modeling and control of wheeled mobile robots not satisfying ideal velocity constraints: The unicycle case, Proc. of 35th Conf. on Decision and Control, Kobe, Japan, 1996, 1437–1442. [22] I. Motte & G. Campion, A slow manifold approach for the control of mobile robots not satisfying the kinematic constraints, IEEE Transactions on Robotics and Automation, 16(6), 2000, 875–880. [23] Z.P. Wang, C.Y. Su, T.H. Lee, & S.S. Ge, Robust adaptive control of a wheeled mobile robot violating the pure nonholonomic constraint, 8th Int. Conf. on Control, Automation, Robotics and Vision, Kumming, China, 2004, 987–992. [24] F. Lewis, C. Abdallah, & D. Dawson, Control of robot manipulators (New York: MacMillan Publishing Co., 1993). [25] K.S. Narendra & A.M. Annaswamy, A new adaptive law for robust adaptation without persistent excitation, IEEE Transactions on Automatic Control, 32(2), 1987, 134–145. [26] C.C. Ward & K. Iagnemma, A dynamic-model-based wheel slip detector for mobile robots on outdoor terrain, IEEE Transactions on Robotics, 24(4), 2008, 821–831. [27] D.A. Krishnamurthy, Modeling and simulation of skid steered robot pioneer P3AT, M.Sc. Dissertation, Florida State University, Department of Mechanical Engineering, USA, 2008. [28] D.M. Dawson, J. Hu, & T.C. Burg, Nonlinear control of electric machinery (New York, NY: Marcel Dekker, 1998).
Important Links:
Go Back