FROBENIUS-PERRON GRAPHS FOR TEMPORAL DATA CLASSIFICATION1

Barend J. van Wyk and Michaël A. van Wyk

References

  1. [1] M.I. Jordan & T.J. Sejnowski (eds) Graphical models: Foundations of neural computation (London: MIT Press, 2001).
  2. [2] B. Samanta & K.R. Al-Balushi, Artificial neural network based fault diagnostic of rolling element bearings using time-domain features, Mechanical Systems and Signal Processing, 12(2), 2003, 317–328.
  3. [3] L. Zhinong, W. Zhaotong, H. Yongyong, & F. Chu, Hidden Markov model-based fault diagnostics method in speed-up and speed-down process for rotating machinery, Mechanical Systems and Signal Processing, 19, 2005, 329–339.
  4. [4] E.M.M. Swe, M. Pwint, & F. Sattar, On the discrimination of speech/music using time series regularity, Tenth IEEE International Symposium on Multimedia, December 15–17, Berkeley, CA, USA, 2008.
  5. [5] F. Gullo, G. Ponti, A. Tagarelli, & S. Greco, A time series representation model for accurate and fast similarity detection, Pattern Recognition, 42, 2009, 2998–3014.
  6. [6] Ž. Jagnjić, N. Bogunović, I. Pižeta, & F. Jović, Time series classification based on qualitative space fragmentation, Advanced Engineering Informatics, 23, 2009, 116–129.
  7. [7] J. Jakubowski, K. Kwiatos, A. Chwaleba, & S. Osowski, Higher order statistics and neural network for tremor recognition, IEEE Transactions on Biomedical Engineering, 49(2), 2002, 152–158.
  8. [8] R.J. Povinelli, M.T. Johnson, A.C. Lindgren, & J. Ye, Time series classification using gaussian mixture models of reconstructed phase spaces, IEEE Transactions on Knowledge and Data Engineering, 16(6), 2004, 779–783.
  9. [9] B.J. van Wyk, M.A. van Wyk, & G. Qi, Difference histograms: A new tool for time series analysis applied to bearing fault diagnosis, Pattern Recognition Letters, 30, 2009, 595–599.
  10. [10] M.A Van Wyk & J. Ding, Stochastic analysis of electrical circuits, in G. Chen & T. Ueta (Ed.), Chaos in circuits and systems (World Scientific Series on Nonlinear Science, Series B, 11, 2002).
  11. [11] M.A. Van Wyk & T.S. Durrani, Classification of system response using probabilistic modelling, Proceedings of the South African Telecommunications Networks Applications Conference, 1999, 275–280.
  12. [12] T. Kohda & K. Shitanda, Time correlation functions of chaotic solutions observed in a certain class of piecewise-linear difference equations, Electronics and Communications in Japan, 66-A(8), 1984, 16–25.
  13. [13] T. Kohda & K. Murao, Piecewise polynomial galerkin approximation to invariant desnities of one-dimensional difference equations, Electronics and Communications in Japan, 65-A(6), 1982, 1–11.
  14. [14] D.S. Sivia & J. Skilling, Data analysis – A bayesian tutorial (New York: Oxford Univerity Press, 2006).
  15. [15] T. Saito, A chaos generator based on a quasi-harmonic oscillator, IEEE Transactions in Circuits Systems, CAS-32(4), 1985, 320–331.
  16. [16] M.A. van Wyk, Chaos in electronics (Dordrecht, The Netherlands: Kluwer Academic Publishers, 1997).
  17. [17] S. Theodoridis & K. Koutroumbas, Pattern recognition (San Diego, USA: Academic Press, 1999).

Important Links:

Go Back