KINEMATICS-BASED CHARACTERIZATION OF THE COLLISION COURSE

F. Belkhouche and B. Belkhouche

References

  1. [1] J.G. de Lamadrid & M. Gini, Path tracking through unchartedmoving obstacles, IEEE Transactions on Systems, Man andCybernetics, 20(6), 1990, 1408–1422. doi:10.1109/21.61210
  2. [2] N. Bourbakis, A traffic priority language for collision-free navi-gation of autonomous mobile robots in dynamic environments,IEEE Transactions on Systems, Man and Cybernetics Part B,27 (4), 1997, 573–587. doi:10.1109/3477.604097
  3. [3] C. Shih, T. tian Lee, & W. Gruver, A unified approach forrobot motion planning with moving polyhedral obstacles, IEEETransactions on Systems, Man and Cybernetics, 20 (4), 1990,903–915. doi:10.1109/21.105088
  4. [4] R. Spence & S. Hutchinson, An integrated architecture forrobot motion planning and control in the presence of obstacleswith unknown trajectories, IEEE Transactions on Systems,Man and Cybernetics, 25 (1), 1995, 100–110. doi:10.1109/21.362962
  5. [5] J.G. de Lamadrid, Avoidance of obstacles with unknown tra-jectories: Locally optimal paths and periodic sensor readings,The International Journal of Robotics Research, 13 (6), 1994,496–507. doi:10.1177/027836499401300603
  6. [6] J. Reif & M. Sharir, Motion planning in the presence of movingobstacles, Journal of the Association of Computing Machinery,41 (4), 1994, 764–790.
  7. [7] J. Hopcrof, J. Schwartz, & M. Sharir, On the complexity ofmotion planning for multiple independent objects; PSPACE-hardness of the warehouseman’s problem, The InternationalJournal of Robotics Research, 3 (4), 1984, 76–88. doi:10.1177/027836498400300405
  8. [8] M. Akella & K. Alfriend, Probability of collision between spaceobjects, Journal of Guidance, Control, and Dynamics, 23 (5),2000, 769–772.
  9. [9] R. Patera, Satellite collision probability for nonlinear relativemotion, Journal of Guidance, Control, and Dynamics, 26 (5),2003, 728–731.
  10. [10] K. Fujimura & H. Samet, Time minimal paths among movingobstacles, Proc. IEEE International Conf. on Robotics andAutomation, Arizona, 1989, 1110–1115.
  11. [11] K. Fujimura & H. Samet, Motion planning in dynamic domain,Proc. IEEE International Conf. on Robotics and Automation,Ohio, 1990, 324–330.
  12. [12] K. Fujimura & H. Samet, Planning a time minimal motionamong moving obstacles, Algorithmica, 10, 1993, 41–63. doi:10.1007/BF01908631
  13. [13] D. Vasquez, F. Large, T. Fraichard, & C. Laugier, Movingobstacles’ motion prediction for autonomous navigation, Proc.International Conf. on Control, Automation, Robotics andVision, China, 2004, 149–154.
  14. [14] P. Fiorini & Z. Shiller, Motion planning in dynamic environ-ments using velocity obstacles, The International Journal ofRobotics Research, 17 (7), 1998, 760–772. doi:10.1177/027836499801700706
  15. [15] A. Chakravarthy & D. Ghose, Obstacle avoidance in dynamicenvironment: A collision cone approach, IEEE Transactions onSystems, Man and Cybernetics Part A, 28 (5), 1998, 562–574. doi:10.1109/3468.709600
  16. [16] V. Hayward, S. Auby, A. Foisy, & Y. Ghallab, Efficient collisionprediction among many moving objects, The InternationalJournal of Robotics Research, 14 (2), 1995, 129–143. doi:10.1177/027836499501400203
  17. [17] S.H. Suh & M.-S. Kim, An algebraic approach to collision-avoidance trajectory planning for dual-robot systems: Formu-lation and optimization, Robotica, 10, 1992, 173–182.
  18. [18] E. Gilbert & D. Johnson, Distance functions and their applica-tion to robot path planning in the presence of obstacles, IEEEJournal of Robotics and Automation, 1 (1), 1985, 21–30.
  19. [19] K.M. Krishna & P. Karla, Detection, tracking and avoidanceof multiple dynamic objects, Journal of Intelligent and RoboticSystems, 33, 2002, 371–408.
  20. [20] K. Kyriakopoulos & G. Saridis, Distance estimation and colli-sion prediction for online robotic motion planning, Automatica,28 (2), 1992, 389–394. doi:10.1016/0005-1098(92)90124-X
  21. [21] M. Lin & J. Canny, A fast algorithm for incremental distancecalculation, Proc. IEEE International Conf. on Robotics andAutomation, California, 1991, 1008–1014.
  22. [22] E. Gilbert, D. Johnson, & S. Keerthi, A fast procedure forcomputing the distance between complex objects in three-dimensional, IEEE Journal of Robotics and Automation, 4 (2),1988, 193–203.135 doi:10.1109/56.2083
  23. [23] E. Bernabeu & J. Tornero, Hough transform for distancecomputation and collision avoidance, IEEE Transactions onRobotics and Automation, 18 (3), 2002, 393–398. doi:10.1109/TRA.2002.1019476
  24. [24] B. Mirtich, V-clip: Fast and robust polyhedral collision detec-tion, ACM Transactions on Graphics, 17, 1998, 177–208. doi:10.1145/285857.285860
  25. [25] S. Ehmann & M. Lin, Accelerated proximity queries betweenconvex polydra using multi-level Voronoi marching, Proc.IEEE/RSJ International Conf. on Intelligent Robots Systems,Japan, 2000, 2101–2106.
  26. [26] S. Cameron, A comparison of two fast algorithms for computingthe distance between convex polyhedra, IEEE Transactionson Robotics and Automation, 13 (6), 1997, 915–920. doi:10.1109/70.650170
  27. [27] S. Cameron, Enhancing GJK: Computing minimum and pen-etration distance between convex polyhedra, Proc. IEEE In-ternational Conference on Robotics and Automation, Albu-querque, 1997, 3112–3117. doi:10.1109/ROBOT.1997.606761
  28. [28] S. Ehmann & M. Lin, Accurate and fast proximity queriesbetween polyhedra using convex surface decomposition, Com-puter Graphics, 20(3), 2001, 500–511. doi:10.1111/1467-8659.00543
  29. [29] K.E. Ho, A. Zaferakis, M.C. Lin, & D. Manocha, Fast andsimple 2D geometric proximity queries using graphics hardware,Proc. ACM Symposium on Interactive 3D Graphics, NewMexico, 2001, 145–148.
  30. [30] L. Ortega, F. Feito, C. Grima, & A. Marquez, Collisiondetection using polar diagrams, Proc. International Conf. inCentral Europe on Computer Graphics, Visualization andComputer Vision, Plzen, 2004, 117–120.
  31. [31] B. Aronov, S. Fortune, & G. Wilfong, Minimum-speed motions,The International Journal of Robotic Research, 10 (3), 1991,228–238. doi:10.1177/027836499101000304
  32. [32] K. Fujimura, Time minimum routes in time dependent net-works, IEEE Transaction on Robotics and Automation, 11 (3),1995, 343–351. doi:10.1109/70.388776
  33. [33] K. Fujimura & H. Samet, A hierarchical strategy for pathplanning among moving obstacles, IEEE Transactions onRobotics and Automation, 5 (1), 1989, 61–69. doi:10.1109/70.88018
  34. [34] V. Lumelsky & A. Stepanov, Path planning strategies for apoint mobile automation moving amidst unknown obstacles ofarbitrary shape, Algorithmica, 2, 1987, 403–430. doi:10.1007/BF01840369

Important Links:

Go Back