P. S´nchez-S´nchez and F. Reyes-Cort´s a a e
[1] A.K. Becjzy, Robot Arm Dynamics and Control (Pasadena,CA: Technical Memo 33-669, NASA Jet Propulsion Laboratory,1976). [2] M. Takegaki & S. Arimoto, A New Feedback method fordynamic control of manipulators, Journal of Dynamic Systems,Measurement, and Control, 102 (2), 1981, 119–125. [3] S. Arimoto & F. Miyasaki, Stability and robustness of PDfeedback control with gravity compensation for robot manip-ulators, in F.W. Paul & D. Youcef-Toumi (Eds.), Robotics:Theory and Practice, DSC 3, 1986, 67–72. [4] Zhihua Qu & D.M. Dawson, Robust Tracking Control of RobotManipulators, 233 pages, IEEE Press, New York, 1996. [5] Y. Xu, J.M. Hollerbach, & D. Ma, A nonlinear PD controllerfor force and contact transient control, IEEE Control Systems,15 (1), 1995, 15–21. doi:10.1109/37.341859 [6] T.C. Hsia, Robustness analysis of a PD controller with ap-proximate gravity compensation for robot manipulator control,Journal of Robotic System, 11 (6), 1994, 517–521. doi:10.1002/rob.4620110606 [7] R. Kelly & R. Carelli, A class of nonlinear PD-type controllersfor robot manipulators, Journal of Robotic System, 13 (12),1996, 793–802. doi:10.1002/(SICI)1097-4563(199612)13:12<793::AID-ROB2>3.0.CO;2-Q [8] V. Santib´a˜nez, R. Kelly, & F. Reyes, A new set-point con-troller with bounded torques for robot manipulators, IEEETransaction on Industrial Electronics, 45 (1), 1998, 126–133.86 doi:10.1109/41.661313 [9] C.C. Cheah, S. Kawamura, S. Arimoto, & K. Lee, PIDcontrol of robotic manipulator with uncertain Jacobian matrix,Proc. of the 1999 IEEE International Conf. on Robotics andAutomation, Detroit, MI, 1999, 494–499. doi:10.1109/ROBOT.1999.770025 [10] H. Seraji, A new class of nonlinear PID controller with roboticapplications, Journal of Robotic System, 15 (3), 1998, 61–81. [11] B. Armstrong-Ho´elouvry, D. Neevel, & T. Kusik, New results inPID control: Tracking, integral control, friction compensationand experimental results, Proc. of the 1999 IEEE InternationalConf. on Robotics and Automation, Detroit, MI, 1999, 837–842. [12] R. Kelly, Regulation of manipulators in generic task space:An energy shaping plus damping injection approach, IEEETransactions on Robotics and Automation, 15 (2), 1999,381–386. doi:10.1109/70.760361 [13] J. Alvarez, R. Kelly, & I. Cervantes, Semiglobal stability of sat-urated linear PID control for robot manipulators, Automatica,39 (6), 2003, 989–995. doi:10.1016/S0005-1098(03)00035-9 [14] C.C. Cheah, M. Hirano, S. Kawamura, & S. Arimoto, Approx-imate Jacobian control with task space damping for robot ma-nipualtors. IEEE transactions on Automatic Control, 40 (5),2004, 752–757. doi:10.1109/TAC.2004.825971 [15] C.C. Cheah & H.C. Liaw, inverse jacobian regulator with grav-ity compensation: stability and experiment, IEEE transactionson Robotics, 21 (4), 2005, 741–747. doi:10.1109/TRO.2005.844674 [16] A. Loria, R. Kelly, R. Ortega, & V. Santib´a˜nez, On output feed-back control of euler-lagrange systems under input constraints,IEEE Transactions on Control, 42 (8), 1996, 1138–1142. doi:10.1109/9.618243 [17] H. Goldstein, Classical Dynamics (Reading, MA: Addison-Wesley, 1950). [18] L. Sciavicco & B. Siciliano, Modeling and Control of RobotManipulators (Napoles: McGraw Hill, 1996). [19] R. Kelly, R. Haber, R. Haber-Guerra, & F. Reyes, Lyapunovstable control of robot manipulators: A fuzzy self-tunningprocedure, Intelligent Automation and Soft Computing, 5 (4),1999, 313–326. [20] R. Kelly, V. Santib´a˜nez, & F. Reyes, On Saturated-proportinalderivative feedback with adaptive gravity compensation ofrobot manipulators, International Journal of Adaptive Controland Signal Processing, 10 (4–5), 1996, 465–479. doi:10.1002/(SICI)1099-1115(199607)10:4/5<465::AID-ACS375>3.0.CO;2-8 [21] G. Schreiber & G. Hirzinger, Singularity Consistent InverseKinematics by enhancing the Jacobian Transpose, Advancesin Robot Kinematics: Analysis and Control, Wolfgangsee,Germany, 1998, 209–216. [22] A. Loria & R. Ortega, Force/position regulation for robot ma-nipulators with unmeasurable velocities and uncertain gravity,Automatica, 36 (6), 1996, 939–943. doi:10.1016/0005-1098(96)00005-2 [23] L.L. Whitcomb, A.A. Rizzi, & D.E. Koditschek, Comparativeexperiments with a new adaptive controller for robot arms,IEEE Transaction on Robotics and Automation, 9 (1), 1993,59–69. doi:10.1109/70.210795 [24] F. Reyes & R. Kelly, On parameter identification of robotmanipulator, Proc. of the 1997 IEEE International Conf. onRobotics and Automation, Albuquerque, New Mexico, 1999,1910–1915. [25] R. Kelly & V. Santib´a˜nez, A class of global regulators withbounded actions for robot manipulators, Proc. of the 35thConf. on Decision and Control, Kobe, Japan, 1996, 3382–3387. doi:10.1109/CDC.1996.573678 [26] F. Reyes & R. Kelly, Experimental evolution of identificationschemes on a direct drive robot, Proc. of the 1998 IEEEInternational Conf. on Robotics and Automation, Leuven,Belgium, 1998, 2327–2332. doi:10.1109/ROBOT.1998.680670 [27] B. De Jager & J. Banens, Experimental evaluations of robotcontrollers, Proc. of the 33rd Conf. on Decision and Control,Lake Buena Vista, USA, 1994, 363–368. doi:10.1109/CDC.1994.410902 [28] H. Berghuis, H. Roebbers, & H. Nijmeijer, Experimentalcomparison of parameter estimation method in adaptive robotcontrol, Automatica, 31 (9), 1995, 1275–1285. doi:10.1016/0005-1098(95)00046-Y [29] A. Jaritz & M. Spong, An experimental comparison of robustcontrol algorithms on a direct drive manipulator, IEEE Trans-action on Control Systems Technology, 4 (6), 1996, 363–368. [30] R. Kelly, V. Santib’a nez, & F. Reyes, A class of adaptiveregulators for robot manipulator, International Journal ofAdaptive Control and Signal Processing, 12 (1), 1998, 41–62. doi:10.1002/(SICI)1099-1115(199802)12:1<41::AID-ACS466>3.0.CO;2-A [31] C.H. An, C.G. Atkeson, J.D. Griffiths, & J.M. Hollerbach,Experimental evaluation of feedforward and computed torquecontrol, IEEE Transaction on Robotics and Automation, 5 (3),1989, 368–373. doi:10.1109/70.34773
Important Links:
Go Back