RESOLVE REDUNDANCY WITH CONSTRAINTS FOR OBSTACLE AND SINGULARITY AVOIDANCE SUBGOALS

C. Qiu, Q. Cao, and Y. Sun

References

  1. [1] R.V. Mayorga & A.K. Wong, A singularities prevention ap-proach for redundant robot manipulators, Proc. IEEE Int.Conf. on Robotics and Automation, Cincinnati, OH, USA,1990, 812–817.
  2. [2] A.A. Maciejewski & C.A. Klein, Obstacle avoidance for kine-matically redundant manipulators in dynamically varying en-vironments, International Journal of Robotics Research, 4(4),1985, 109–117.
  3. [3] Y. Nakamura, H. Hanafusa, & T. Yoshikawa, Task prioritybased redundancy control of robot manipulators, InternationalJournal of Robotics Research, 6(2), 1987, 3–15. doi:10.1177/027836498700600201
  4. [4] F.-T. Cheng, T.-H. Chen, & Y.-Y. Sun, Efficient algorithm forresolving manipulator redundancy: The compact QP method,Proc. IEEE Int. Conf. on Robotics and Automation, Nice,France, 1992, 508–513.
  5. [5] F.-T. Cheng & M.S. Shih, Multiple-goal priority considerationsof redundant manipulators, Robotica, 15(6), 1997, 675–691. doi:10.1017/S0263574797000805
  6. [6] F.-T. Cheng, M.-S. Shih, F.-C. Kung, & Y.-Y. Sun, The im-proved parallel scheme for multiple-goal priority considerationsof redundant manipulators, Proc. IEEE Int. Conf. on Roboticsand Automation, Albuquerque, NM, USA, 1997, 2409–2414. doi:10.1109/ROBOT.1997.619322
  7. [7] F. -T. Cheng, T.-H. Chen, Y.-S. Wang, & Y.-Y. Sun, Obstacleavoidance for redundant manipulators using the compact QPmethod, Proc. IEEE Int. Conf. on Robotics and Automation,Atlanta, GA, vol. 3, 1993, 262–269.
  8. [8] C. Pholsiri, Task-based decision making and control of roboticmanipulators, doctoral diss., University of Texas, Austin, TX,2004.
  9. [9] M. Cetin, Performance identification and multi-criteria redun-dancy resolution for robotic systems, doctoral diss., Universityof Texas, Austin, TX, 1999.
  10. [10] M. Pryor, Task-based resource allocation for improving thereusability of redundant manipulators, doctoral diss., Universityof Texas, Austin, TX, 2002.
  11. [11] Z. Mao & T.C. Hsia, Obstacle avoidance inverse kinematicssolution of redundant robots by neural networks, Robotica, 15,1997, 3–10. doi:10.1017/S0263574797000027
  12. [12] H. Ding & S.E. Chang, A real-time planning algorithm forobstacle avoidance of redundant robots, Journal of lntelligentand Robotic Systems, 16, 1996, 229–243.
  13. [13] Y. Zhang & J. Wang, Obstacle avoidance for kinematicallyredundant manipulators using a dual neural network, IEEETrans. on Systems, Man, and Cybernetics, 34, 2004, 752–759. doi:10.1109/TSMCB.2003.811519
  14. [14] S.I. Choi & B.K. Kim, Obstacle avoidance control for redundantmanipulators using collidability measure, Robotica, 18, 2000,143–151. doi:10.1017/S0263574799001861
  15. [15] D.E. Whitney, Resolved motion rate control of manipulatorsand human prostheses, IEEE Trans. on Man-Machine Systems,MMS-10, 1969, 47–53. doi:10.1109/TMMS.1969.299896
  16. [16] J. Baillieul, Kinematic programming alternative for redun-dant manipulators, Proc. IEEE Int. Conf. on Robotics andAutomation, St. Louis, MO, 1985, 722–728.
  17. [17] A. Liegeois, Automatic supervisory control of the configurationand behavior of multibody mechanisms, IEEE Trans. onSystems, Man, and Cybernetics, SMC-7 (12), 1977, 868–871.
  18. [18] P.H. Chang, A closed-form solution for the inverse kinematicsof robot manipulators with redundancy, IEEE Journal ofRobotics and Automation, RA-3 (5), 1987, 393–403.
  19. [19] J. Wang, Q. Hu, & D. Jiang, A Lagrangian network forkinematic control of redundant robot manipulators, IEEETrans. on Neural Networks, 10(5), 1999, 1123–1132. doi:10.1109/72.788651
  20. [20] H. Ding & J. Wang, Recurrent neural networks for minimuminfinity-norm kinematic control of redundant manipulators,IEEE Trans. on Systems, Man, and Cybernetics A, Syst.Humans, 29(3), 1999, 269–276. doi:10.1109/3468.759273
  21. [21] Y. Xia & J. Wang, A dual neural network for kinematic controlof redundant robot manipulators, IEEE Trans. on Systems,Man, and Cybernetics, 31(1), 2001, 147–154. doi:10.1109/3477.907574
  22. [22] Y. Xia, G. Feng, & J. Wang, A primal-dual neural networkfor online resolving constrained kinematic redundancy in robotmotion control, IEEE Trans. Systems, Man, and Cybernetics,35(1), 2005, 54–64. doi:10.1109/TSMCB.2004.839913
  23. [23] E.S.L. Ho, T. Komura, & R.W.H. Lau, Computing inversekinematics with linear programming, Proc. ACM Symp. onVirtual Reality Software and Technology, Monterey, CA, 2005,163–166. doi:10.1145/1101616.1101651
  24. [24] T. Yoshikawa, Manipulability of robotic mechanisms, Interna-tional Journals of Robotics Research, 4(2), 1985, 3–9. doi:10.1177/027836498500400201
  25. [25] A.K. Charles & L. Chu, Comparison of extended Jacobianand Lagrange multiplier based methods for resolving kinematicredundancy, Journal of Intelligent and Robotic Systems, 19,1997, 39–54. doi:10.1023/A:1007941331202
  26. [26] J.F. Gardner et al., Applications of neural networks for coor-dinate transformations in robotics, Journal of Intelligent andRobotic Systems, 8, 1993, 361–373. doi:10.1007/BF01257949
  27. [27] P.W. Protzel, D.L. Palumbo, & M.K. Arras, Performanceand fault-tolerance of neural networks for optimization, IEEETrans. on Neural Networks, 4, 1993, 600–614. doi:10.1109/72.238315
  28. [28] G. Serpen & D.L. Livingston, Analysis of the relationshipbetween weight parameters and stability of solutions in Hopfieldnetworks from dynamic systems viewpoint, Neural, Paralleland Scientific Computations, 2, 1994, 361–372.
  29. [29] Z. Li Stan, Improving convergence and solution quality ofHopfield-Type neural networks with augmented Lagrange mul-tipliers, IEEE Trans. on Neural Networks, 7(6), 1996, 1507–1516. doi:10.1109/72.548179
  30. [30] Z. Zeng & J. Wang, Improved conditions for global exponentialstability of recurrent neural networks with time-varying delays,IEEE Trans. on Neural Networks, 17(3), 2006, 623–635. doi:10.1109/TNN.2006.873283
  31. [31] E. Schwartz, R. Manseur, & K. Doty, Noncommensuratesystems in robotics, International Journal of Robotics andAutomation, 17(2), 2002, 86–92.
  32. [32] R. Goldbach, Some randomized algorithms for convex quadraticprogramming, Applied Mathematics & Optimization, 39(1),1999, 121–142. doi:10.1007/s002459900101
  33. [33] S.S. Chern & W.H. Chern, Lecture notes of differential geometry(Beijing: University of Beijing, 2001).
  34. [34] R. Fletcher, Practical methods of optimization (New York:Wiley, 1987).
  35. [35] C.W. Wampler, Manipulator inverse kinematic solutions basedon vector formulations and damped least-squares methods,IEEE Trans. on Systems, Man, and Cybemetics, SMC-16,1986, 93–101. doi:10.1109/TSMC.1986.289285
  36. [36] N.S. Bedrossian, Classification of singular configurations forredundant manipulators, Proc. IEEE Int. Conf. on Roboticsand Automation, New York, 1990, 818–823.29
  37. [37] J. Seng, O. Neil, & A. Kevin, Escapability of singular con-figuration for redundant manipulators via self-motion, Proc.IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Pitts-burgh, PA, USA, Part 3, 1995, 78–83.

Important Links:

Go Back