AN AUTOMATIC BI-CHANNEL COMPRESSION TECHNIQUE FOR MEDICAL IMAGES

M.A.-R. Abdou and M.B. Tayel

References

  1. [1] M. Tayel & M. Abdou, Fast and reduced-bit zerotree codingalgorithm for progressive transmission of medical images, Proc.2nd IASTED Multiconference (ACIT-SIP 2005), Novosibirk,Russia, June 2005, 296–301.
  2. [2] W. Qian, Tree-structured nonlinear filters in digital mammog-raphy, IEEE Trans. Medical Imaging, 13 (1), 1994, 25–36. doi:10.1109/42.276142
  3. [3] S. Yu, A CAD system for the automatic detection of clusteredmicrocalcifications in digitized mammogram films, IEEE Trans.Medical Imaging, 19 (2), 2000, 115–126. doi:10.1109/42.836371
  4. [4] T.W. Ryan, L.D. Sanders, & H.D. Fisher, Wavelet domaintexture modeling for image compression, Proc. ICIP 94, Vol.2, Austin, TX (Silver Springs, MD: IEEE Computer SocietyPress, 1994), 380–384. doi:10.1109/ICIP.1994.413596
  5. [5] M.B. Kim, Y.D. Cho, D.K. Kim, & N.K. Ha, On the com-pression of medical images with regions of interest, VisualCommunications and Image Processing 95, Vol. 2501, Taipei,Taiwan (Bellingham, WA: SPIE, 1995), 733–744.
  6. [6] G. Poggi & R.A. Olshen, Pruned tree-structured vector quan-tization of medical images with segmentation and improvedprediction, IEEE Trans. Image Processing, 4 (6), 1995,734–742. doi:10.1109/83.388076
  7. [7] A. Vlaicu, S. Lungu, N. Crisan, & S. Persa, New compressiontechniques for storage and transmission of 2-D and 3-D medicalimages, Advanced Image And Video Communications andStorage Technologies, Vol. 2451 (Amsterdam: SPIE, 1995),370–377.
  8. [8] W. Qian, R. Sankar, X. Song, X. Sun, & R. Clark, Standard-ization for image characteristics in telemammography usinggenetic and nonlinear algorithms, Computers in Biology andMedicine.
  9. [9] P. Schelkens, A. Munteanu, & J. Cornelis, Wavelet basedcompression of medical images: Protocols to improve resolutionand quality scalability and region of interest coding, FutureGeneration Computer Systems, 15, 1999, 171–184. doi:10.1016/S0167-739X(98)00061-2
  10. [10] J. Strom & P.C. Cosman, Medical image compression withlossless regions of interest, Signal Processing, 59, 1997, 155–171. doi:10.1016/S0165-1684(97)00044-3
  11. [11] T. Yu, N. Lin, S.J. Liu, & A.K. Chan, A region of interestbased transmission protocol for wavelet compressed medicalimages, Proc. SPIE3078, Orlando, FL, USA, 1997, 56–64.
  12. [12] D. Buller, A. Buller, P. Innocent, & W. Pawlak, Determiningand classifying the ROI in ultrasonic images of the breast usingneural network, Artificial Intelligence in Medicine, 8, 1996,53–66. doi:10.1016/0933-3657(95)00020-8
  13. [13] D. Chen, R. Chang, W. Kuo, M. Chen, & Y. Huang, Diagno-sis of breast tumors with sonographic texture analysis usingwavelet transform and neural network, Ultrasound in Medicineand Boilogy, 28 (10), 2002, 1301–1310. doi:10.1016/S0301-5629(02)00620-8
  14. [14] C.C. Boring, T. Squires, T. Tong, & S. Montgomery, Cancerstatistics, CA Cancer J. Clinicians, 44, 1994, 7–26.
  15. [15] M.B. Kim, Y.D. Cho, D.K. Kim, & N.K. Ha, On the com-pression of medical images with regions of interest, Visual20Communications and Image Processing 95, Vol. 2501, Taipei,Taiwan (Bellingham, WA: SPIE, 1995), 733–744.
  16. [16] T. Sikora, S. Bauer, & B. Makai, Efficiency of shape adaptive2-D transforms for coding of arbitrarily shaped image segments,IEEE Trans. on Circuits and Systems for Video Technology,5 (3), 1995, 254–258. doi:10.1109/76.401104
  17. [17] C. Stiller & J. Konrad, Region-adaptive transform based ona stochastic model, Proc. ICIP-95, Vol. 2, Washington, DC(Silver Springs, MD: IEEE Computer Society Press, 1995),264–267. doi:10.1109/ICIP.1995.537465
  18. [18] L.A. Zadeh, Fuzzy logic computing with words, IEE Trans.Fuzzy Systems, 4, 1996, 103–111. doi:10.1109/91.493904
  19. [19] K. Hirota & W. Pedrycz, Data compression with fuzzy relationalequations, Fuzzy Sets and Systems, 126, 2002, 325–335. doi:10.1016/S0165-0114(01)00009-4
  20. [20] C.K. Chung, M.B. Chen, H.S. Ramakrisnan, V. Cheng, &C.D. Chen, A web-based virtual laboratory on a frequencymodulation experiment, IEEE Trans. SMC, 3, 2001, 31.
  21. [21] A. Taleb-Ahmed & A. Bigand, Telemedicine and fuzzy logic:Application in ophthalmology, Pattern Recognition Letters, 24,2003, 2731–2742. doi:10.1016/S0167-8655(03)00116-8
  22. [22] J.M. Shapiro, Embedded image coding using zerotrees ofwavelet coefficients, IEEE Trans. on Signal Processing, 41 (12),1993, 3445–3462. doi:10.1109/78.258085
  23. [23] A. Said & W. Pearlman, A new fast and efficient image codecbased on set partitioning in hierarchical trees, IEEE Trans.on Circuits and Systems for Video Technology, 6 (3), 1996,243–250. doi:10.1109/76.499834
  24. [24] W. Chen & C. Smith, Adaptive coding of monochrome andcolor images, IEEE Trans. on Communications, COM-25 (11),1977, 1285–1292. doi:10.1109/TCOM.1977.1093763

Important Links:

Go Back