Valroization of Selected Biomass and Wastes by Co-Pyrolysis with Coal

R. Moliner, M.J. Lázaro, I. Suelves, and M.J. Blesa

References

  1. [1] A. Green, A green alliance of biomass and coal (GABC). Presentation before the National Coal Council, USA, http://plaza.ufl.edu/aegreen/downloads/FLTX.pdf.
  2. [2] World energy outlook 2002, International Energy Agency, http://library.iea.org.
  3. [3] European Union, Energy and transport in figures, http://europa.eu.int/comm/energy_transport/etif/index.html.
  4. [4] Directorate General for Energy and Transport, European Commission, The green book, http://europa.eu.int/comm/energy_transport.
  5. [5] http://www.ucm.es/info/dig.
  6. [6] http://www.unizar.es/acad/fac/cps/iq/unizar.html.
  7. [7] http://www.ciemat.es/eng/departamentos/dep eneren.html.
  8. [8] http://www.ciemat.es/eng/departamentos/dep comfos.html.
  9. [9] http://www.circe.cps.unizar.es.
  10. [10] http://www.icb.csic.es.
  11. [11] K. Miura, K. Mae, T. Yoshimura, K. Masuda, & K. Hashimoto, Mechanism of radical transfer during the flash pyrolysis of solvent-swollen coal, Energy & Fuels, 5, 1991, 803–808. doi:10.1021/ef00030a006
  12. [12] K. Ofosu-Asante, L.M. Stock, & R.F. Zabransky, Pathways for the decomposition of linear paraffinic materials during coal pyrolysis, Fuel, 68, 1989, 567–572. doi:10.1016/0016-2361(89)90151-8
  13. [13] C. Song & J.H. Schobert, Opportunities for developing specialty chemicals and advanced materials from coals, Fuel Processing Technology, 34, 1993, 157–196. doi:10.1016/0378-3820(93)90098-O
  14. [14] M.J. Blesa, V. Fierro, J.L. Miranda, R. Moliner, & J.M. Palacios, Effect of the pyrolysis process on the physicochemical and mechanical properties of smokeless fuel briquettes, Fuel Processing Technology, 74, 2001, 1–17. doi:10.1016/S0378-3820(01)00209-0
  15. [15] M.J. Blesa, J.L. Miranda, M.T. Izquierdo, & R. Moliner, Study of the curing temperature effect on binders for smokeless briquettes by Fourier transform infrared spectroscopy, Vibrational Spectroscopy, 31, 2003, 81–87. doi:10.1016/S0924-2031(02)00097-8
  16. [16] M.J. Blesa, J.L. Miranda, M.T. Izquierdo, & R. Moliner, Curing time effect on mechanical strength of smokeless fuel briquette, Fuel Processing Technology, 80, 2003, 155–167. doi:10.1016/S0378-3820(02)00243-6
  17. [17] M.J. Blesa, J.L. Miranda, M.T. Izquierdo, & R. Moliner, Curing temperature effect on mechanical strength of smokeless fuel briquettes prepared with humates, Energy & Fuels, 17 (2), 2003, 419–423. doi:10.1021/ef020156f
  18. [18] M. Martínez-Escandell, P. Torregrosa, H. Marsh, F. RodríguezReinoso, R. Santamaría-Ramírez, C. Gómez de Salazar, & E. Romero-Palazón, Pyrolysis of petroleum residues: I. Yields and products analysis, Carbon, 37, 1999, 1567–1582. doi:10.1016/S0008-6223(99)00028-7
  19. [19] W. Klose & V. Stuke, Comparison of the pyrolysis of different types of biomass and coals, Fuel Processing Technology, 36, 1993, 283–289. doi:10.1016/0378-3820(93)90038-6
  20. [20] F. Rodríguez-Reinoso, P. Santana, E. Romero-Palazón, M.-A. Diez, & H. Marsh, Delayed coking: Industrial and laboratory aspects, Carbon, 36, 1998, 105–116. doi:10.1016/S0008-6223(97)00154-1
  21. [21] R. Moliner, I. Suelves, & M.J. Lázaro, Synergetic effcts in the co-pyrolysis of coal/petroleum residue mixture by pyrolysis/gas chromatography: Influence of temperature, pressure and coal nature, Energy & Fuels, 12, 1998, 963–968. doi:10.1021/ef980033o
  22. [22] I. Suelves, R. Moliner, & M.J. Lázaro, Synergetic effects in the co-pyrolysis of coal and petroleum residues: Influence of coal mineral matter and petroleum residue mass ratio, Journal of Analytical and Applied Pyrolysis, 55, 2000, 29–41. doi:10.1016/S0165-2370(99)00072-8
  23. [23] I. Suelves, M.J. Lázaro, M.A. Diez, & R. Moliner, Characterization of chars obtained from co-pyrolysis of coal and petroleum residues, Energy & Fuels, 16, 2002, 878–886. doi:10.1021/ef010264m
  24. [24] I. Suelves, M.J. Lázaro, & R. Moliner, Synergetic effects in the co-pyrolysis of Samca coal and a model aliphatic compound, Journal of Analytical and Applied Pyrolysis, 65, 2002, 197–206. doi:10.1016/S0165-2370(01)00194-2
  25. [25] R. Wutti, J. Petek, & G. Staudinger, Transport limitations in pyrolysis coal particles, Fuel, 75, 1996, 843. doi:10.1016/0016-2361(96)00021-X
  26. [26] M.A. Serio, D.G. Hamblen, J.R. Markham, & P. Solomon, Kinetics of volatile product evolution in coal pyrolysis: Experiment and theory, Energy & Fuels, 1, 1987, 138. doi:10.1021/ef00002a002
  27. [27] P.R. Solomon, T.H. Fletcher, & R.J. Pugmire, Progress in coal pyrolysis, Fuel, 72, 1993, 587. doi:10.1016/0016-2361(93)90570-R
  28. [28] R. Moliner, M.J. Lázaro, & I. Suelves, Valorization of lube waste by pyrolysis, Energy & Fuels, 11, 1997, 1165–1170. doi:10.1021/ef970025s
  29. [29] M.J. Lázaro, R. Moliner, & I. Suelves, Co-pyrolysis of coals and lube oil wastes in a bench-scale unit, Energy & Fuels, 13, 1999, 907–913. doi:10.1021/ef980271j
  30. [30] M.J. Lázaro, R. Moliner, I. Suelves, C. Nerín, & C. Domeño, Valuable products from mineral waste oils containing heavy metals, Environmental Science & Technology, 34 (15), 2000, 205–3210. doi:10.1021/es9905546
  31. [31] M.J. Lázaro, R. Moliner, I. Suelves, C. Domeño, & C. Nerín, Co-pyrolysis of a mineral waste oil/coal slurry in a continuousmode fluidized bed reactor, Journal of Analytical and Applied Pyrolysis, 65, 2002, 239–252. doi:10.1016/S0165-2370(02)00003-7
  32. [32] M.J. Lázaro, R. Moliner, C. Domeño, & C. Nerín, Low cost sorbents for demetalizatio of waste oils via pyrolysis, Journal of Analytical and Applied Pyrolysis, 57, 2001, 119–131. doi:10.1016/S0165-2370(00)00112-1
  33. [33] N.M. Muradov, CO2-free production of hydrogen by catalytic pyrolysis of hydrocarbon fuel, Energy & Fuels, 12, 1998, 41–48. doi:10.1021/ef9701145
  34. [34] N. Muradov, Catalysis of methane decomposition over elemental carbon, Catalysis Communications, 2, 2001, 89-94 doi:10.1016/S1566-7367(01)00013-9

Important Links:

Go Back