Chaoliang Zhong, Shirong Liu, and Botao Zhang


  1. [1] H. Liang, T. Mei, R. Huang, J. Chen, P. Zhao, and C. Sun, A new dynamic obstacle collision avoidance system for autonomous vehicles, International Journal of Robotics and Automation, 30(3), 2015, 278–288.
  2. [2] L. Wang and C. Luo, A hybrid genetic tabu search algorithm for mobile robot to solve AS/RS path planning, International Journal of Robotics and Automation, 33(2), 2018, 161–168.
  3. [3] J. Padgett and M. Campbell, Q-link: A general planning architecture for navigation with qualitative relational information, Robotics and Autonomous Systems, 108, 2018, 51–65.
  4. [4] I. Kostavelis, K. Charalampous, A. Gasteratos, and J.K. Tsotsos, Robot navigation via spatial and temporal coherent semantic maps, Engineering Applications of Artificial Intelligence, 48, 2016, 173–187.
  5. [5] D.C. Shah and M.E. Campbell, A qualitative path planner for robot navigation using human-provided maps, The International Journal of Robotics Research, 32(13), 2013, 1517–1535.
  6. [6] T. Kruse, A.K. Pandey, R. Alami, and A. Kirsch, Human-aware robot navigation: A survey, Robotics and Autonomous Systems, 61(12), 2013, 1726–1743.
  7. [7] M. McClelland, M. Campbell, and T. Estlin, Qualitative relational mapping and navigation for planetary rovers, Robotics and Autonomous Systems, 83, 2016, 73–86.
  8. [8] J. Ni, Y. Chen, K. Wang, and S.X. Yang, An improved vision-based SLAM approach inspired from animal spatial cognition, International Journal of Robotics and Automation, 34(5), 2019, 491–502.
  9. [9] S. Saeedi, M. Trentini, M. Seto, and H. Li, Multiple-robot simultaneous localization and mapping: A review, Journal of Field Robotics, 33(1), 2016, 3–46.
  10. [10] Q. Lu and Q.-L. Han, Mobile robot networks for environmental monitoring: A cooperative receding horizon temporal logic control approach, IEEE Transactions on Cybernetics, 49(2), 2019, 698–711.
  11. [11] Y. Zhuang, K. Wang, W. Wang, and H. Hu, A hybrid sensing approach to mobile robot localization in complex indoor environments, International Journal of Robotics and Automation, 27(2), 2012, 198–205.
  12. [12] I. Kostavelis and A. Gasteratos, Semantic mapping for mobile robotics tasks: A survey, Robotics and Autonomous Systems, 66, 2015, 86–103.
  13. [13] H. Wu, G.-H. Tian, Y. Li, F.-Y. Zhou, and P. Duan, Spatial semantic hybrid map building and application of mobile service robot, Robotics and Autonomous Systems, 62(6), 2014, 923– 941.
  14. [14] P. Beeson, J. Modayil, and B. Kuipers, Factoring the mapping problem: Mobile robot map-building in the hybrid spatial semantic hierarchy, The International Journal of Robotics Research, 29(4), 2010, 428–459.
  15. [15] A.G. Cohn and J. Renz, Qualitative spatial representation and reasoning, Foundations of Artificial Intelligence, 3, 2008, 551–596.
  16. [16] J. Chen, A.G. Cohn, D. Liu, S. Wang, J. Ouyang, and Q. Yu, A survey of qualitative spatial representations, The Knowledge Engineering Review, 30(1), 2015, 106–136.
  17. [17] G. Ligozat, Qualitative spatial and temporal reasoning (New York: John Wiley & Sons, 2013).
  18. [18] B. Smith, Mereotopology: A theory of parts and boundaries, Data & Knowledge Engineering, 20(3), 1996, 287–303.
  19. [19] T. Mossakowski and R. Moratz, Qualitative reasoning about relative direction of oriented points, Artificial Intelligence, 180, 2012, 34–45.
  20. [20] Z. Falomir, L. Museros, V. Castell´o, and L. Gonzalez-Abril, Qualitative distances and qualitative image descriptions for representing indoor scenes in robotics, Pattern Recognition Letters, 34(7), 2013, 731–743.
  21. [21] A.C. Varzi, Parts, wholes, and part-whole relations: The prospects of mereotopology, Data & Knowledge Engineering, 20(3), 1996, 259–286.
  22. [22] S. Skiadopoulos and M. Koubarakis, Composing cardinal direction relations, Artificial Intelligence, 152(2), 2004, 143–171.

Important Links:

Go Back