JOINT FUNCTION CONTROL METHOD FOR ROBOTIC GAIT TRAINING OF STROKE PATIENTS

Abbas Ehsani-Seresht, Majid M. Moghaddam, and Mohammad R. Hadian

References

  1. [1] K. Wang, H. Yang, W. Wang, and Z. Han, Force configuration of a rigid-flexible gait rehabilitation robot, International Journal of Robotics & Automation, 33(6), 2018, 577–583.
  2. [2] G. Colombo, M. Joerg, R. Schreier, and V. Dietz, Treadmill training of paraplegic patients using a robotic orthosis, Journal of Rehabilitation Research and Development, 37(6), 2000, 693– 700.
  3. [3] S.K. Banala, S.K. Agrawal, and J.P. Scholz, Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients, IEEE 10th Int. Conf. Rehabil. Robot., Noordwijk, The Netherlands, 2007, 401–407.
  4. [4] J.L. Emken, J.H. Wynne, S.J. Harkema, and D.J. Reinkensmeyer, A robotic device for manipulating human stepping, IEEE Transactions on Robotics, 22(1), 2006, 185–189.
  5. [5] J. Veneman, R. Kruidhof, E. Hekman, R. Ekkelenkamp, E. Van Asseldonk, and H. van der Kooij, Design and evaluation of the lopes exoskeleton robot for interactive gait rehabilitation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3), 2007, 379–386.
  6. [6] X. Wu, J. Yi, C. Wang, and C. Chen, A review on human-exoskeleton coordination towards lower limb robotic exoskeleton systems, International Journal of Robotics & Automation, 34(4), 2019, 431–451.
  7. [7] L.L. Cai, A.J. Fong, Y. Liang, and J. Burdick, Assist-as-needed training paradigms for robotic rehabilitations of spinal cord injuries, IEEE Int. Conf. Robotics Autom., Orlando, Florida, 2006, 3504–3511.
  8. [8] C. Lee, D. Won, M.J. Cantoria, M. Hamlin, and R.D. Leon, Robotic assistance that encourages the generation of stepping rather than fully assisting movements is best for learning to step in spinally contused rats, Journal of Neurophysiology, 105(6), 2011, 2764–2771.
  9. [9] A. Koenig, X. Omlin, J. Bergmann, L. Zimmerli, M. Bolliger, F. M¨uller, and R. Riener, Controlling patient participation during robot-assisted gait training, Journal of NeuroEngineering and Rehabilitation, 8(1), 2011, 14.
  10. [10] A. Schuck, R. Labruyere, H. Vallery, R. Riener, and A. Duschau-Wicke, Feasibility and effects of patient-cooperative robot-aided gait training applied in a 4-week pilot trial, Journal of NeuroEngineering and Rehabilitation, 9(1), 2012, 31.
  11. [11] S. Jezernik, G. Colombo, and M. Morari, Automatic gait-pattern adaptation algorithms for rehabilitation with a 4-DOF robotic orthosis, IEEE Transactions on Robotics and Automation, 20(3), 2004, 574–582.
  12. [12] R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, and V. Dietz, Patient-cooperative strategies for robot-aided treadmill training: First experimental results, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(3), 2005, 380–394.
  13. [13] H. Van der Kooij, J. Veneman, and R. Ekkelenkamp, Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot, 28th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., New York City, 2006, 189–193.
  14. [14] C. Huang and J. Chen, On the implementation and control of a pneumatic power active lower-limb orthosis, Mechatronics, 23(5), 2013, 505–517.
  15. [15] S. Hussain, S.Q. Xie, and P.K. Jamwal, Control of a robotic orthosis for gait rehabilitation, Robotics and Autonomous Systems, 61(9), 2013, 911–919.
  16. [16] S. Hussain, S.Q. Xie, and P.K. Jamwal, Robust nonlinear control of an intrinsically compliant robotic gait training orthosis, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(3), 2013, 655–665.
  17. [17] A. Duschau-Wicke, J. von Zitzewitz, A. Caprez, L. Lunenburger, and R. Riener, Path control: A method for patient-cooperative robot-aided gait rehabilitation, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 18(1), 2010, 38–48.
  18. [18] H. Vallery, R. Ekkelenkamp, H. van der Kooij, and M. Buss, Complementary limb motion estimation based on interjoint coordination: experimental evaluation, IEEE ICORR 2007, Noordwijk, 798–803.
  19. [19] J.L. Emken, S.J. Harkema, J.A. Beres-Jones, C.K. Ferreira, and D.J. Reinkensmeyer, Feasibility of manual teach-and-replay and continuous impedance shaping for robotic locomotor training following spinal cord injury, IEEE Transactions on Biomedical Engineering, 55(1), 2008, 322–334.
  20. [20] B. Koopman, E.H. van Asseldonk, and H. van der Kooij, Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton, Journal of NeuroEngineering and Rehabilitation, 10(1), 2013, p. 3.
  21. [21] K. Endo and H. Herr, Human walking model predicts joint mechanics, electromyography and mechanical economy, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., St. Louis, 2009, 4663–4668.
  22. [22] J.A. Blaya and H. Herr, Adaptive control of a variable-impedance ankle–foot orthosis to assist drop-foot gait, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(1), 2004, 24–31.
  23. [23] A. Hansen, D. Childress, S. Miff, S. Gard, and K. Mesplay, The human ankle during walking: Implication for the design of biomimetric ankle prosthesis, Journal of Biomechanics, 37(10), 2004, 1467–1474.
  24. [24] A. Cullell, J.C. Moreno, E. Rocon, A. Forner-Cordero, and J.L. Pons, Biologically based design of an actuator system for a knee-ankle-foot orthosis, Mechanism and Machine Theory, 44(4), 2009, 860–872.
  25. [25] K. Shamaei and A.M. Dollar, On the mechanics of the knee during the stance phase of the gait, Proc. IEEE Int. Conf. Rehabil. Robot., Zurich, Switzerland, 2011, 1–7. 227
  26. [26] E. Martinez-Vilialpando and H. Herr, Agonist-antagonist active knee prosthesis: A preliminary study in level-ground walking, Journal of Rehabilitation Research and Development, 46(3), 2009, 361–373.
  27. [27] R.B. Davis III, S. Ounpuu, D. Tyburski, and J.R. Gage, A gait analysis data collection and reduction technique, Human Movement Science, 10(5), 1991, 575–587.
  28. [28] C.L. Vaughan, B.L. Davis, and J.C. O’Connor, Dynamics of human gait (USA: Human Kinetics Publishers, 1992), 88–92.
  29. [29] D.A. Winter, The biomechanics and motor control of human gait: normal, elderly and pathological, 2nd ed. (Waterloo, ON: University of Waterloo Press, 1991).
  30. [30] J.M. Hausdorff and N.B. Alexander, Gait disorders: evaluation and management (New York: Informa Healthcare, 2005).
  31. [31] M.D. Hasankola, A. Ehsaniseresht, M.M. Moghaddam, and A.M. Saba, Conceptual design of a gait rehabilitation robot, International Journal of Intelligent Robotics and Applications, 4(1), 2015, 55–61.
  32. [32] M.D. Hasankola, A. Ehsaniseresht, M.M. Moghaddam, and A.M. Saba, Analysis, modeling, manufacturing and control of an elastic actuator for rehabilitation robots, Scientia Iranica. Transactions on Mechanical Engineering B, 22(5), 2015, 1855.

Important Links:

Go Back