ADAPTIVE MODEL-FREE VOLTAGE CONTROL OF ROBOT MANIPULATORS

Amir Saleki and Mohammad M. Fateh

References

  1. [1] M.W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control (New York, NY: Wiley, 2006).
  2. [2] J.-J.E. Slotine and W. Li, On the adaptive control of robot manipulators, The International Journal of Robotics Research, 6(3), 1987, 49–59.
  3. [3] H. Wang, Adaptive control of robot manipulators with uncertain kinematics and dynamics, IEEE Transactions on Automatic Control, 62(2), 2017, 948–954.
  4. [4] J.-Q. Han, Nonlinear design methods for control systems, IFAC Proceedings Volumes, 32(2), 1999, 1531–1536.
  5. [5] Z. Gao, Y. Huang, and J. Han, An alternative paradigm for control system design, Decision and Control, 2001. Proc. of the 40th IEEE Conf. on, vol. 5: IEEE, Orlando, FL, USA, 2001, 4578–4585.
  6. [6] M. Fliess and C. Join, Model-free control, International Journal of Control, 86(12), 2013, 2228–2252.
  7. [7] E. Madadi and D. Soffker, Model-free approaches applied to the control of nonlinear systems: A brief survey with special attention to intelligent PID iterative learning control, ASME 2015 Dynamic Systems and Control Conf., American Society of Mechanical Engineers, Columbus, Ohio, USA, 2015, V001T03A004.
  8. [8] X. Bu, Y. Qiao, Z. Hou, and J. Yang, Model free adaptive control for a class of nonlinear systems using quantized information, Asian Journal of Control, 20(2), 2018, 962–968.
  9. [9] R. Zarei and S. Khorashadizadeh, Direct adaptive model-free control of a class of uncertain nonlinear systems using Legendre polynomials, Transactions of the Institute of Measurement and Control, 41(11), 2019, 3081–3091.
  10. [10] C. Huang, C. Luo, Y. Li, and T. Zhang, Differential flatness active disturbance rejection control approach for a class of nonlinear uncertain systems, International Journal of Robotics and Automation, 34(2), 2019.
  11. [11] R.-J. Wai and R. Muthusamy, Fuzzy-neural-network inherited sliding-mode control for robot manipulator including actuator dynamics, IEEE Transactions on Neural Networks and Learning Systems, 24(2), 2013, 274–287.
  12. [12] M.M. Fateh and S. Khorashadizadeh, Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty, Nonlinear Dynamics, 69(3), 2012, 1465–1477.
  13. [13] J. Zhou, Adaptive fuzzy finite-time control for uncertain robotic manipulator, International Journal of Robotics and Automation, 32(2), 2017, 134–141.
  14. [14] M.L. Corradini, A. Giantomassi, G. Ippoliti, S. Longhi, and G. Orlando, Robust control of robot arms via quasi sliding modes and neural networks, in Advances and applications in sliding mode control systems (Springer: Cham, 2015), 79–105.
  15. [15] R. Mei and C. Yu, Adaptive neural output feedback control for uncertain robot manipulators with input saturation, Complexity, 2017, Article ID 7413642, 2017, 12.
  16. [16] T. Mai, Y. Wang, and T. Ngo, Adaptive tracking control for robot manipulators using fuzzy wavelet neural networks, International Journal of Robotics and Automation, 30(1), 2015, 26–39.
  17. [17] S. Khorashadizadeh and M.M. Fateh, Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation, Nonlinear Dynamics, 79(2), 2015, 1151–1161.
  18. [18] S. Khorashadizadeh and M.M. Fateh, Uncertainty estimation in robust tracking control of robot manipulators using the Fourier series expansion, Robotica, 35(2), 2017, 310–336.
  19. [19] N. Golea, A. Golea, K. Barra, and T. Bouktir, Observer-based adaptive control of robot manipulators: Fuzzy systems approach, Applied Soft Computing, 8(1), 2008, 778–787.
  20. [20] S. Tong and Y. Li, Observer-based fuzzy adaptive control for strict-feedback nonlinear systems, Fuzzy Sets and Systems, 160(12), 2009, 1749–1764.
  21. [21] S.E. Talole, J.P. Kolhe, and S.B. Phadke, Extended-state-observer-based control of flexible-joint system with experimental validation, IEEE Transactions on Industrial Electronics, 57(4), 2010, 1411–1419.
  22. [22] R. Gholipour and M.M. Fateh, Observer-based robust task-space control of robot manipulators using Legendre polynomial, in Electrical Engineering (ICEE), 2017 Iranian Conf. on, IEEE, 2017, 766–771.
  23. [23] R. Gholipour and M.M. Fateh, Adaptive task-space control of robot manipulators using the Fourier series expansion without task-space velocity measurements, Measurement, 123, 2018, 285–292.
  24. [24] S.M. Ahmadi and M.M. Fateh, Robust control of electrically driven robots using adaptive uncertainty estimation, Computers & Electrical Engineering, 56, 2016, 674–687.
  25. [25] A. Safaei, Y.C. Koo, and M.N. Mahyuddin, Adaptive model-free control for robotic manipulators, in Robotics and Intelligent Sensors (IRIS), 2017 IEEE International Symposium on, IEEE, 2017, 7–12.
  26. [26] M. Jin, S.H. Kang, P.H. Chang, and J. Lee, Robust control of robot manipulators using inclusive and enhanced time delay control, IEEE/ASME Transactions on Mechatronics, 22(5), 2017, 2141–2152.
  27. [27] J. Lee, P.H. Chang, and M. Jin, Adaptive integral sliding mode control with time-delay estimation for robot manipulators, IEEE Transactions on Industrial Electronics, 64(8), 2017, 6796–6804.
  28. [28] H.-J. Bae, M. Jin, J. Suh, J.Y. Lee, P.-H. Chang, and D.-s. Ahn, Control of robot manipulators using time-delay estimation and fuzzy logic systems, Journal of Electrical Engineering & Technology, 12(3), 2017, 1271–1279.
  29. [29] M.M. Fateh, Robust fuzzy control of electrical manipulators, Journal of Intelligent & Robotic Systems, 60(3–4), 2010, 415–434.
  30. [30] M.M. Fateh and R. Babaghasabha, Impedance control of robots using voltage control strategy, Nonlinear Dynamics, 74(1–2), 2013, 277–286.
  31. [31] M.M. Fateh, H.A. Tehrani, and S.M. Karbassi, Repetitive control of electrically driven robot manipulators, International Journal of Systems Science, 44(4), 2013, 775–785.
  32. [32] Y. Tan, J. Chang, H. Tan, and J. Hu, Integral backstepping control and experimental implementation for motion system, in Control Applications, 2000. Proc. of the 2000 IEEE International Conf. on, IEEE, 2000, 367–372.

Important Links:

Go Back