FAULT TOLERANT METHOD ON POSITION CASCADE CONTROL OF DC SERVO SYSTEM

Katherin Indriawati and Noboru Sebe

References

  1. [1] H. Noura, D. Theilliol, J.C. Ponsart, and A. Chamseddine, Fault-tolerant control systems: design and practical applica- tions (London: Springer-Verlag, 2009).
  2. [2] J. Jiang, Fault-tolerant control systems – an introductory overview, Acta Automatica Sinica, 31(1), 2005, 161–174.
  3. [3] Y. Zhang and J. Jiang, Bibliographical review on reconfigurable fault-tolerant control systems, Annual Reviews in Control, 32(2), 2008, 229–252.
  4. [4] N. Sebe and K. Suyama, Passive fault tolerant servo control against sensors and actuators, European Control Conference, Strasbourg, France, 2014.
  5. [5] K. Toyoda, N. Sebe, and K. Suyama, Effects of diagonal dominance on performance of passive fault tolerant servo system, 10th Asian Control Conference, Kota Kinabalu, 2015.
  6. [6] K. Indriawati, T. Agustinah, and A. Jazidie, Real time implementation of robust observer based sensor and actuator fault tolerant tracking control for a DC motor system, International Review of Automatic Control, 11(5), 2018, 255–263.
  7. [7] J. Wang and G. Yang, Data-driven output-feedback fault-tolerant compensation control for digital PID control systems with unknown dynamics, IEEE Transactions on Industrial Electronics, 63(11), 2016, 7029–7039.
  8. [8] Z. Tao, W. Shu, W. Lei, and Z. Yang, Active disturbance rejection control of servo systems with friction, International Conference on Control, Automation and Systems Engineering, Zhangjiajie, 2009.
  9. [9] Y. Chong and K. Zhang, Study on the active disturbance rejection control of servo system, International Conference on Computer and Communication Technologies in Agriculture Engineering, Chengdu, 2010.
  10. [10] P. Strakos and M. Valasek, Mechanical systems position control by means of adaptive controller with additional measurement, Intelligent Systems and Control, Cambridge, 2009.
  11. [11] K.B. Pathak and D.M. Adhyaru, MRAC based DC servo motor motion, International Journal of Advanced Research in Engineering and Technology, 7(2), 2016, 53–63.
  12. [12] A. Sabanovic, Variable structure systems with sliding modes in motion control—a survey, IEEE Transactions on Industrial Informatics, 7(2), 2011, 212–223.
  13. [13] A.M. Yousef, Experimental set up verification of servo DC motor position control based on integral sliding mode approach, WSEAS Transactions on Systems and Control, 7(3), 2012, 87–96.
  14. [14] R. Zhang and M. Bikdash, Fault tolerant neuro-robust position control of DC motors, Journal of Electromagnetic Analysis and Applications, 3, 2011, 412–415.
  15. [15] A. Benmakhlouf, A. Louchene, and D. Djarah, Fuzzy logic and modified crisp logic applied to a DC motor position control, Control and Intelligent Systems, 38(3), 2010.
  16. [16] J. He and C. Zhang, A design method for fault reconfiguration and fault-tolerant control of a servo motor, Mathematical Problems in Engineering, 2013, 2013.
  17. [17] D.A. Papathanasopoulos and E.D. Mitronikas, Fault tolerant control of a brushless DC motor with defective position sensors, XIII International Conference on Electrical Machines, Alexandroupoli, 2018.
  18. [18] Y. Zhang, Z. Zhao, T. Lu, L. Yuan, W. Xu, and J. Zhu, A comparative study of Luenberger observer, sliding mode observer and extended Kalman filter for sensorless vector control of induction motor drives, IEEE Energy Conversion Congress and Exposition, San Jose, 2009.
  19. [19] K. Indriawati, T. Agustinah, and A. Jazidie, Robust observer- based fault tolerant tracking control for linear systems with simultaneous actuator and sensor faults: application to a DC motor system, International Review on Modelling and Simulation, 8(4), 2015, 410–417.
  20. [20] F. Arvani, S.N. Ferdaus, and M.T. Iqbal, Digital control of MS-150 modular position servo system, NECEC, St. John’s, NL, 2007.
  21. [21] N. Bacac, V. Slukic, M. Puskaric, B. Stih, E. Kamenar, and S. Zelenika, Comparison of different DC motor positioning, 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, 2014.
  22. [22] M. Schleicher and F. Blasinger, Control engineering: a guide for beginners, 3rd ed. (Fulda, Germany: JUMO GmbH & Co. KG, 2003).
  23. [23] L. Chena, J. Li, and R. Ding, Identification for the second-order systems based on the step response, Mathematical and Computer Modelling, 53(5–6), 2011, 1074–1083.
  24. [24] A.S.F. Rahman and N. Taib, Stepper motor pid and fuzzy logic controller with tachogenerator feedback, Asian Conference on Sensors, Kebangsann, 2003.

Important Links:

Go Back